Show that sequence is a Cauchy sequenceLet $a_n=frac{a_{n-1}+a_{n-2}}{2}$ for each positive integer $ngeq 2$....

Will the duration of traveling to Ceres using the same tech developed for going to Mars be proportional to the distance to go to Mars or not?

How to know you are over-explaining and oversimplifying a subject?

In a post apocalypse world, with no power and few survivors, would Satnav still work?

How to Build a List from Separate Lists

Does しかたない imply disappointment?

What is formjacking?

Why does this quiz question say that protons and electrons do not combine to form neutrons?

Short story about a man betting a group he could tell a story, and one of them would disappear and the others would not notice

In the Lost in Space intro why was Dr. Smith actor listed as a special guest star?

How many copper coins fit inside a cubic foot?

How can I give a Ranger advantage on a check due to Favored Enemy without spoiling the story for the player?

Coworker asking me to not bring cakes due to self control issue. What should I do?

Crack the bank account's password!

Algebraic proof that two statements of the fundamental theorem of algebra are equivalent

Can someone explain what a key is?

Can you say "leftside right"?

How can I prep for the Curse of Strahd adventure effectively?

Are all power cords made equal?

Why is Shelob considered evil?

How to transport 10,000 terrestrial trolls across ocean fast?

If I tried and failed to start my own business, how do I apply for a job without job experience?

Is there any danger of my neighbor having my wife's signature?

EM Vs PM Speaker

Missing a connection and don't have money to book next flight



Show that sequence is a Cauchy sequence


Let $a_n=frac{a_{n-1}+a_{n-2}}{2}$ for each positive integer $ngeq 2$. Show that ${a_n}_{n=1}^{infty}$ is CauchyShow that $langle f_n rangle$ is a Cauchy sequence, where $f_n=1-frac12+frac13-frac14+dots+frac{(-1)^{n-1}}{n}$Show that $(3x_{n}+4y_{n})$ is also Cauchy sequence.Uniformly Cauchy sequence of functionsIs this sequence Cauchy in the space of polynomials under the infinity norm?The sequence $b_n=pa_n+qa_{n+1}$, where $|p|<q$, is convergent. Prove that $a_n$ converges. If $|p|geq q > 0$ show that $a_n$ need not converge.Prove that it is a cauchy sequenceShowing sequence is Cauchy by DefinitionSequence of function on $mathbb{R}$ Cauchy iff convergentProve that $(a_n) preccurlyeq_1 (b_n) iff (a_n) preccurlyeq_2 (b_n)$ or $(a_n) approx (b_n)$ for Cauchy sequences













2












$begingroup$


Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    3 hours ago






  • 1




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    3 hours ago
















2












$begingroup$


Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    3 hours ago






  • 1




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    3 hours ago














2












2








2





$begingroup$


Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .










share|cite|improve this question











$endgroup$




Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$



is a Cauchy sequence



My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$



using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $



$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$



$|f_{n}-f_{m}|ledfrac{n-m}{m}$



I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .







sequences-and-series cauchy-sequences






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Bernard

121k740116




121k740116










asked 4 hours ago









kira0705kira0705

1167




1167








  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    3 hours ago






  • 1




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    3 hours ago














  • 1




    $begingroup$
    Well, the limit of the sequence because of Leibniz' criterion.
    $endgroup$
    – egreg
    3 hours ago






  • 1




    $begingroup$
    Hint: a convergent sequence is Cauchy.
    $endgroup$
    – Bernard
    3 hours ago








1




1




$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago




$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago




1




1




$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago




$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

If you ignore the signs of the terms,
the result diverges.
So you can't do that.



$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$

so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$
.



If
$n-m$ is even,
so $n-m = 2j$,
then



$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
&lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
&lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$



If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
    $endgroup$
    – kira0705
    2 hours ago



















2












$begingroup$

Hint :



$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        2 hours ago
















      2












      $begingroup$

      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        2 hours ago














      2












      2








      2





      $begingroup$

      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.






      share|cite|improve this answer









      $endgroup$



      If you ignore the signs of the terms,
      the result diverges.
      So you can't do that.



      $f_n
      =sum_{k=1}^n dfrac{(-1)^k}{k}
      $

      so,
      if $n > m$,
      $f_n-f_m
      =sum_{k=m+1}^n dfrac{(-1)^k}{k}
      =sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
      =(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
      $
      .



      If
      $n-m$ is even,
      so $n-m = 2j$,
      then



      $begin{array}\
      f_n-f_m
      &=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
      &=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
      &=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
      &=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      text{so}\
      |f_n-f_m|
      &=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
      &=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
      quadtext{this is the sneaky part}\
      &lt dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
      &= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
      &= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
      &< dfrac{1}{2m}\
      &to 0 text{ as } m to infty\
      end{array}
      $



      If $n-m$ is odd,
      the sum changes
      by at most $frac1{n}$
      so it still goes to zero.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      marty cohenmarty cohen

      73.8k549128




      73.8k549128








      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        2 hours ago














      • 1




        $begingroup$
        Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
        $endgroup$
        – kira0705
        2 hours ago








      1




      1




      $begingroup$
      Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
      $endgroup$
      – kira0705
      2 hours ago




      $begingroup$
      Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
      $endgroup$
      – kira0705
      2 hours ago











      2












      $begingroup$

      Hint :



      $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Hint :



        $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Hint :



          $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$






          share|cite|improve this answer









          $endgroup$



          Hint :



          $$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Clément GuérinClément Guérin

          10k1736




          10k1736























              0












              $begingroup$

              Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$






                  share|cite|improve this answer











                  $endgroup$



                  Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 3 hours ago

























                  answered 3 hours ago









                  user516079user516079

                  318210




                  318210






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Szabolcs (Ungheria) Altri progetti | Menu di navigazione48°10′14.56″N 21°29′33.14″E /...

                      Discografia di Klaus Schulze Indice Album in studio | Album dal vivo | Singoli | Antologie | Colonne...

                      How to make inet_server_addr() return localhost in spite of ::1/128RETURN NEXT in Postgres FunctionConnect to...