Show that sequence is a Cauchy sequenceLet $a_n=frac{a_{n-1}+a_{n-2}}{2}$ for each positive integer $ngeq 2$....
Will the duration of traveling to Ceres using the same tech developed for going to Mars be proportional to the distance to go to Mars or not?
How to know you are over-explaining and oversimplifying a subject?
In a post apocalypse world, with no power and few survivors, would Satnav still work?
How to Build a List from Separate Lists
Does しかたない imply disappointment?
What is formjacking?
Why does this quiz question say that protons and electrons do not combine to form neutrons?
Short story about a man betting a group he could tell a story, and one of them would disappear and the others would not notice
In the Lost in Space intro why was Dr. Smith actor listed as a special guest star?
How many copper coins fit inside a cubic foot?
How can I give a Ranger advantage on a check due to Favored Enemy without spoiling the story for the player?
Coworker asking me to not bring cakes due to self control issue. What should I do?
Crack the bank account's password!
Algebraic proof that two statements of the fundamental theorem of algebra are equivalent
Can someone explain what a key is?
Can you say "leftside right"?
How can I prep for the Curse of Strahd adventure effectively?
Are all power cords made equal?
Why is Shelob considered evil?
How to transport 10,000 terrestrial trolls across ocean fast?
If I tried and failed to start my own business, how do I apply for a job without job experience?
Is there any danger of my neighbor having my wife's signature?
EM Vs PM Speaker
Missing a connection and don't have money to book next flight
Show that sequence is a Cauchy sequence
Let $a_n=frac{a_{n-1}+a_{n-2}}{2}$ for each positive integer $ngeq 2$. Show that ${a_n}_{n=1}^{infty}$ is CauchyShow that $langle f_n rangle$ is a Cauchy sequence, where $f_n=1-frac12+frac13-frac14+dots+frac{(-1)^{n-1}}{n}$Show that $(3x_{n}+4y_{n})$ is also Cauchy sequence.Uniformly Cauchy sequence of functionsIs this sequence Cauchy in the space of polynomials under the infinity norm?The sequence $b_n=pa_n+qa_{n+1}$, where $|p|<q$, is convergent. Prove that $a_n$ converges. If $|p|geq q > 0$ show that $a_n$ need not converge.Prove that it is a cauchy sequenceShowing sequence is Cauchy by DefinitionSequence of function on $mathbb{R}$ Cauchy iff convergentProve that $(a_n) preccurlyeq_1 (b_n) iff (a_n) preccurlyeq_2 (b_n)$ or $(a_n) approx (b_n)$ for Cauchy sequences
$begingroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
$endgroup$
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago
1
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago
add a comment |
$begingroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
$endgroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
sequences-and-series cauchy-sequences
edited 3 hours ago
Bernard
121k740116
121k740116
asked 4 hours ago
kira0705kira0705
1167
1167
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago
1
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago
add a comment |
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago
1
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago
1
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago
1
1
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
2 hours ago
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
2 hours ago
add a comment |
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
2 hours ago
add a comment |
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
answered 3 hours ago
marty cohenmarty cohen
73.8k549128
73.8k549128
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
2 hours ago
add a comment |
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
2 hours ago
1
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
2 hours ago
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
2 hours ago
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
answered 3 hours ago
Clément GuérinClément Guérin
10k1736
10k1736
add a comment |
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
edited 3 hours ago
answered 3 hours ago
user516079user516079
318210
318210
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
3 hours ago
1
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
3 hours ago