Algebraic proof that two statements of the fundamental theorem of algebra are equivalentA question on the...

Why is Shelob considered evil?

Is it possible to detect 100% of SQLi with a simple regex?

Taking an academic pseudonym?

Why write a book when there's a movie in my head?

What is an efficient way to digitize a family photo collection?

How do I purchase a drop bar bike that will be converted to flat bar?

Is there a way to pause a running process on Linux systems and resume later?

Two oatmeal pies a day keep the doctor away?

Is it possible to narrate a novel in a faux-historical style without alienating the reader?

What does "south of due west" mean?

What is formjacking?

What sort of grammatical construct is ‘Quod per sortem sternit fortem’?

Does しかたない imply disappointment?

How can guns be countered by melee combat without raw-ability or exceptional explanations?

In a post apocalypse world, with no power and few survivors, would Satnav still work?

How to Build a List from Separate Lists

Is the tritone (A4 / d5) still banned in Roman Catholic music?

Are all power cords made equal?

Have any astronauts or cosmonauts died in space?

Graphical modeler calculator missing in QGIS3

What does an unprocessed RAW file look like?

How do I add a strong "onion flavor" to the biryani (in restaurant style)?

Why do single electrical receptacles exist?

What is the reward?



Algebraic proof that two statements of the fundamental theorem of algebra are equivalent


A question on the Fundamental Theorem of AlgebraFundamental Theorem of AlgebraFundamental theorem of algebra simple proof for rewriting with rootsIs the fundamental theorem of algebra valid with polynomial terms like $bar{z}$ and $Re (z)$?Degenerate zeroes, fundamental theorem of algebra.Is this an equivalent statement to the Fundamental Theorem of Algebra?Derivation of the Fundamental Theorem of AlgebraWhy fundamental theorem of algebra is stated less intuitively in college math?Fundamental theorem of algebra - connecting equivalent formulationsEvery complex polynomial is a product of first degree polynomials, alternative proofs?













3












$begingroup$


Students studying the fundamental theorem of algebra in high school are probably familiar with the statement that goes something like the following.




Every non-zero, single-variable, degree $n$ polynomial with complex coefficients has, counted with multiplicity, exactly $n$ complex roots.




However, another statement I often see (and comes first in the Wikipedia article) is the following.




The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root.




These statements are equivalent and Wikipedia says that this can be proven by successive polynomial long division. However, Wikipedia does not give this proof. It is absent from Wolfram MathWorld as well.



My question is, what is the proof that these statements are equivalent? I know that the fundamental theorem of algebra cannot be proven algebraically, but can this equivalence be proven with only algebra, i.e., polynomial division?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I prefer the second statement, which is really the bulk of the question.
    $endgroup$
    – egreg
    2 hours ago










  • $begingroup$
    The first statement is a corollary of the second. The second is also simpler to grasp: "If $p$ is a polynomial, then $p$ has at least one root."
    $endgroup$
    – Bernard Massé
    2 hours ago










  • $begingroup$
    The real-analysis tag seems inappropriate, but I'm not confident enough of this judgement to delete it. I've added a couple more tags that do seem appropriate.
    $endgroup$
    – Calum Gilhooley
    25 mins ago
















3












$begingroup$


Students studying the fundamental theorem of algebra in high school are probably familiar with the statement that goes something like the following.




Every non-zero, single-variable, degree $n$ polynomial with complex coefficients has, counted with multiplicity, exactly $n$ complex roots.




However, another statement I often see (and comes first in the Wikipedia article) is the following.




The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root.




These statements are equivalent and Wikipedia says that this can be proven by successive polynomial long division. However, Wikipedia does not give this proof. It is absent from Wolfram MathWorld as well.



My question is, what is the proof that these statements are equivalent? I know that the fundamental theorem of algebra cannot be proven algebraically, but can this equivalence be proven with only algebra, i.e., polynomial division?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I prefer the second statement, which is really the bulk of the question.
    $endgroup$
    – egreg
    2 hours ago










  • $begingroup$
    The first statement is a corollary of the second. The second is also simpler to grasp: "If $p$ is a polynomial, then $p$ has at least one root."
    $endgroup$
    – Bernard Massé
    2 hours ago










  • $begingroup$
    The real-analysis tag seems inappropriate, but I'm not confident enough of this judgement to delete it. I've added a couple more tags that do seem appropriate.
    $endgroup$
    – Calum Gilhooley
    25 mins ago














3












3








3


1



$begingroup$


Students studying the fundamental theorem of algebra in high school are probably familiar with the statement that goes something like the following.




Every non-zero, single-variable, degree $n$ polynomial with complex coefficients has, counted with multiplicity, exactly $n$ complex roots.




However, another statement I often see (and comes first in the Wikipedia article) is the following.




The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root.




These statements are equivalent and Wikipedia says that this can be proven by successive polynomial long division. However, Wikipedia does not give this proof. It is absent from Wolfram MathWorld as well.



My question is, what is the proof that these statements are equivalent? I know that the fundamental theorem of algebra cannot be proven algebraically, but can this equivalence be proven with only algebra, i.e., polynomial division?










share|cite|improve this question











$endgroup$




Students studying the fundamental theorem of algebra in high school are probably familiar with the statement that goes something like the following.




Every non-zero, single-variable, degree $n$ polynomial with complex coefficients has, counted with multiplicity, exactly $n$ complex roots.




However, another statement I often see (and comes first in the Wikipedia article) is the following.




The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root.




These statements are equivalent and Wikipedia says that this can be proven by successive polynomial long division. However, Wikipedia does not give this proof. It is absent from Wolfram MathWorld as well.



My question is, what is the proof that these statements are equivalent? I know that the fundamental theorem of algebra cannot be proven algebraically, but can this equivalence be proven with only algebra, i.e., polynomial division?







real-analysis complex-analysis algebra-precalculus polynomials proof-explanation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 27 mins ago









Calum Gilhooley

4,577629




4,577629










asked 3 hours ago









GnumbertesterGnumbertester

582113




582113








  • 1




    $begingroup$
    I prefer the second statement, which is really the bulk of the question.
    $endgroup$
    – egreg
    2 hours ago










  • $begingroup$
    The first statement is a corollary of the second. The second is also simpler to grasp: "If $p$ is a polynomial, then $p$ has at least one root."
    $endgroup$
    – Bernard Massé
    2 hours ago










  • $begingroup$
    The real-analysis tag seems inappropriate, but I'm not confident enough of this judgement to delete it. I've added a couple more tags that do seem appropriate.
    $endgroup$
    – Calum Gilhooley
    25 mins ago














  • 1




    $begingroup$
    I prefer the second statement, which is really the bulk of the question.
    $endgroup$
    – egreg
    2 hours ago










  • $begingroup$
    The first statement is a corollary of the second. The second is also simpler to grasp: "If $p$ is a polynomial, then $p$ has at least one root."
    $endgroup$
    – Bernard Massé
    2 hours ago










  • $begingroup$
    The real-analysis tag seems inappropriate, but I'm not confident enough of this judgement to delete it. I've added a couple more tags that do seem appropriate.
    $endgroup$
    – Calum Gilhooley
    25 mins ago








1




1




$begingroup$
I prefer the second statement, which is really the bulk of the question.
$endgroup$
– egreg
2 hours ago




$begingroup$
I prefer the second statement, which is really the bulk of the question.
$endgroup$
– egreg
2 hours ago












$begingroup$
The first statement is a corollary of the second. The second is also simpler to grasp: "If $p$ is a polynomial, then $p$ has at least one root."
$endgroup$
– Bernard Massé
2 hours ago




$begingroup$
The first statement is a corollary of the second. The second is also simpler to grasp: "If $p$ is a polynomial, then $p$ has at least one root."
$endgroup$
– Bernard Massé
2 hours ago












$begingroup$
The real-analysis tag seems inappropriate, but I'm not confident enough of this judgement to delete it. I've added a couple more tags that do seem appropriate.
$endgroup$
– Calum Gilhooley
25 mins ago




$begingroup$
The real-analysis tag seems inappropriate, but I'm not confident enough of this judgement to delete it. I've added a couple more tags that do seem appropriate.
$endgroup$
– Calum Gilhooley
25 mins ago










1 Answer
1






active

oldest

votes


















6












$begingroup$

Induction (on the degree of the polynomial) suffices.



As it's clear that the first implies the second, we need only argue that the second implies the first.



This is clear for degree $1$.



Inductively suppose it for degree $n-1$.



Let $P(x)$ have degree $n$. By the second definition it has at least one root, $alpha$. Then, by standard polynomial division we may write $P(x)=(x-alpha)times Q(x)$ where $Q(x)$ has degree $n-1$. Applying the inductive hypothesis to $Q(x)$ shows that the second definition implies the first.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    The proof is incomplete. You need to prove that it has exactly $n$ roots.
    $endgroup$
    – Bill Dubuque
    58 mins ago












  • $begingroup$
    For example, over the ring $,Bbb Z/8 = $ integers $bmod 8,$ both $x-1$ and $x+1$ have exacty $1$ root, but their product $,x^2-1,$ has $4$ roots $,pm1,pm3. $
    $endgroup$
    – Bill Dubuque
    12 mins ago












  • $begingroup$
    @BillDubuque but over $mathbb{Z}/8$ we have things like $x^2+1$ has no roots, 'violating' the second statement of the fundamental theorem of $mathbb{Z}/8$-algebra, so that's not a counterexample (because you can't prove the first statement using the second statement if the second statement isn't true). (I do agree with your initial comment.)
    $endgroup$
    – boboquack
    8 mins ago












  • $begingroup$
    @boboquack My point was to show how additivity of number of roots fails in general rings, so it requires proof in this special case. Your remark has nothing to do with that so it may confuse readers.
    $endgroup$
    – Bill Dubuque
    5 mins ago













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123145%2falgebraic-proof-that-two-statements-of-the-fundamental-theorem-of-algebra-are-eq%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Induction (on the degree of the polynomial) suffices.



As it's clear that the first implies the second, we need only argue that the second implies the first.



This is clear for degree $1$.



Inductively suppose it for degree $n-1$.



Let $P(x)$ have degree $n$. By the second definition it has at least one root, $alpha$. Then, by standard polynomial division we may write $P(x)=(x-alpha)times Q(x)$ where $Q(x)$ has degree $n-1$. Applying the inductive hypothesis to $Q(x)$ shows that the second definition implies the first.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    The proof is incomplete. You need to prove that it has exactly $n$ roots.
    $endgroup$
    – Bill Dubuque
    58 mins ago












  • $begingroup$
    For example, over the ring $,Bbb Z/8 = $ integers $bmod 8,$ both $x-1$ and $x+1$ have exacty $1$ root, but their product $,x^2-1,$ has $4$ roots $,pm1,pm3. $
    $endgroup$
    – Bill Dubuque
    12 mins ago












  • $begingroup$
    @BillDubuque but over $mathbb{Z}/8$ we have things like $x^2+1$ has no roots, 'violating' the second statement of the fundamental theorem of $mathbb{Z}/8$-algebra, so that's not a counterexample (because you can't prove the first statement using the second statement if the second statement isn't true). (I do agree with your initial comment.)
    $endgroup$
    – boboquack
    8 mins ago












  • $begingroup$
    @boboquack My point was to show how additivity of number of roots fails in general rings, so it requires proof in this special case. Your remark has nothing to do with that so it may confuse readers.
    $endgroup$
    – Bill Dubuque
    5 mins ago


















6












$begingroup$

Induction (on the degree of the polynomial) suffices.



As it's clear that the first implies the second, we need only argue that the second implies the first.



This is clear for degree $1$.



Inductively suppose it for degree $n-1$.



Let $P(x)$ have degree $n$. By the second definition it has at least one root, $alpha$. Then, by standard polynomial division we may write $P(x)=(x-alpha)times Q(x)$ where $Q(x)$ has degree $n-1$. Applying the inductive hypothesis to $Q(x)$ shows that the second definition implies the first.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    The proof is incomplete. You need to prove that it has exactly $n$ roots.
    $endgroup$
    – Bill Dubuque
    58 mins ago












  • $begingroup$
    For example, over the ring $,Bbb Z/8 = $ integers $bmod 8,$ both $x-1$ and $x+1$ have exacty $1$ root, but their product $,x^2-1,$ has $4$ roots $,pm1,pm3. $
    $endgroup$
    – Bill Dubuque
    12 mins ago












  • $begingroup$
    @BillDubuque but over $mathbb{Z}/8$ we have things like $x^2+1$ has no roots, 'violating' the second statement of the fundamental theorem of $mathbb{Z}/8$-algebra, so that's not a counterexample (because you can't prove the first statement using the second statement if the second statement isn't true). (I do agree with your initial comment.)
    $endgroup$
    – boboquack
    8 mins ago












  • $begingroup$
    @boboquack My point was to show how additivity of number of roots fails in general rings, so it requires proof in this special case. Your remark has nothing to do with that so it may confuse readers.
    $endgroup$
    – Bill Dubuque
    5 mins ago
















6












6








6





$begingroup$

Induction (on the degree of the polynomial) suffices.



As it's clear that the first implies the second, we need only argue that the second implies the first.



This is clear for degree $1$.



Inductively suppose it for degree $n-1$.



Let $P(x)$ have degree $n$. By the second definition it has at least one root, $alpha$. Then, by standard polynomial division we may write $P(x)=(x-alpha)times Q(x)$ where $Q(x)$ has degree $n-1$. Applying the inductive hypothesis to $Q(x)$ shows that the second definition implies the first.






share|cite|improve this answer









$endgroup$



Induction (on the degree of the polynomial) suffices.



As it's clear that the first implies the second, we need only argue that the second implies the first.



This is clear for degree $1$.



Inductively suppose it for degree $n-1$.



Let $P(x)$ have degree $n$. By the second definition it has at least one root, $alpha$. Then, by standard polynomial division we may write $P(x)=(x-alpha)times Q(x)$ where $Q(x)$ has degree $n-1$. Applying the inductive hypothesis to $Q(x)$ shows that the second definition implies the first.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 hours ago









lulululu

42.3k25080




42.3k25080












  • $begingroup$
    The proof is incomplete. You need to prove that it has exactly $n$ roots.
    $endgroup$
    – Bill Dubuque
    58 mins ago












  • $begingroup$
    For example, over the ring $,Bbb Z/8 = $ integers $bmod 8,$ both $x-1$ and $x+1$ have exacty $1$ root, but their product $,x^2-1,$ has $4$ roots $,pm1,pm3. $
    $endgroup$
    – Bill Dubuque
    12 mins ago












  • $begingroup$
    @BillDubuque but over $mathbb{Z}/8$ we have things like $x^2+1$ has no roots, 'violating' the second statement of the fundamental theorem of $mathbb{Z}/8$-algebra, so that's not a counterexample (because you can't prove the first statement using the second statement if the second statement isn't true). (I do agree with your initial comment.)
    $endgroup$
    – boboquack
    8 mins ago












  • $begingroup$
    @boboquack My point was to show how additivity of number of roots fails in general rings, so it requires proof in this special case. Your remark has nothing to do with that so it may confuse readers.
    $endgroup$
    – Bill Dubuque
    5 mins ago




















  • $begingroup$
    The proof is incomplete. You need to prove that it has exactly $n$ roots.
    $endgroup$
    – Bill Dubuque
    58 mins ago












  • $begingroup$
    For example, over the ring $,Bbb Z/8 = $ integers $bmod 8,$ both $x-1$ and $x+1$ have exacty $1$ root, but their product $,x^2-1,$ has $4$ roots $,pm1,pm3. $
    $endgroup$
    – Bill Dubuque
    12 mins ago












  • $begingroup$
    @BillDubuque but over $mathbb{Z}/8$ we have things like $x^2+1$ has no roots, 'violating' the second statement of the fundamental theorem of $mathbb{Z}/8$-algebra, so that's not a counterexample (because you can't prove the first statement using the second statement if the second statement isn't true). (I do agree with your initial comment.)
    $endgroup$
    – boboquack
    8 mins ago












  • $begingroup$
    @boboquack My point was to show how additivity of number of roots fails in general rings, so it requires proof in this special case. Your remark has nothing to do with that so it may confuse readers.
    $endgroup$
    – Bill Dubuque
    5 mins ago


















$begingroup$
The proof is incomplete. You need to prove that it has exactly $n$ roots.
$endgroup$
– Bill Dubuque
58 mins ago






$begingroup$
The proof is incomplete. You need to prove that it has exactly $n$ roots.
$endgroup$
– Bill Dubuque
58 mins ago














$begingroup$
For example, over the ring $,Bbb Z/8 = $ integers $bmod 8,$ both $x-1$ and $x+1$ have exacty $1$ root, but their product $,x^2-1,$ has $4$ roots $,pm1,pm3. $
$endgroup$
– Bill Dubuque
12 mins ago






$begingroup$
For example, over the ring $,Bbb Z/8 = $ integers $bmod 8,$ both $x-1$ and $x+1$ have exacty $1$ root, but their product $,x^2-1,$ has $4$ roots $,pm1,pm3. $
$endgroup$
– Bill Dubuque
12 mins ago














$begingroup$
@BillDubuque but over $mathbb{Z}/8$ we have things like $x^2+1$ has no roots, 'violating' the second statement of the fundamental theorem of $mathbb{Z}/8$-algebra, so that's not a counterexample (because you can't prove the first statement using the second statement if the second statement isn't true). (I do agree with your initial comment.)
$endgroup$
– boboquack
8 mins ago






$begingroup$
@BillDubuque but over $mathbb{Z}/8$ we have things like $x^2+1$ has no roots, 'violating' the second statement of the fundamental theorem of $mathbb{Z}/8$-algebra, so that's not a counterexample (because you can't prove the first statement using the second statement if the second statement isn't true). (I do agree with your initial comment.)
$endgroup$
– boboquack
8 mins ago














$begingroup$
@boboquack My point was to show how additivity of number of roots fails in general rings, so it requires proof in this special case. Your remark has nothing to do with that so it may confuse readers.
$endgroup$
– Bill Dubuque
5 mins ago






$begingroup$
@boboquack My point was to show how additivity of number of roots fails in general rings, so it requires proof in this special case. Your remark has nothing to do with that so it may confuse readers.
$endgroup$
– Bill Dubuque
5 mins ago




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123145%2falgebraic-proof-that-two-statements-of-the-fundamental-theorem-of-algebra-are-eq%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Szabolcs (Ungheria) Altri progetti | Menu di navigazione48°10′14.56″N 21°29′33.14″E /...

Discografia di Klaus Schulze Indice Album in studio | Album dal vivo | Singoli | Antologie | Colonne...

How to make inet_server_addr() return localhost in spite of ::1/128RETURN NEXT in Postgres FunctionConnect to...