How do I break down the math symbols in this equationHow to use math symbols to represent a basic formulaHow...
If I tried and failed to start my own business, how do I apply for a job without job experience?
Is the tritone (A4 / d5) still banned in Roman Catholic music?
How to Build a List from Separate Lists
Why would you use 2 alternate layout buttons instead of 1, when only one can be selected at once
Are one-line email responses considered disrespectful?
Why does a single AND gate need 60 transistors?
Identical projects by students at two different colleges: still plagiarism?
What could cause an entire planet of humans to become aphasic?
How do I break down the math symbols in this equation
Are all power cords made equal?
What is an explicit bijection in combinatorics?
How do I narratively explain how in-game circumstances do not mechanically allow a PC to instantly kill an NPC?
What does "south of due west" mean?
Do the speed limit reductions due to pollution also apply to electric cars in France?
Why don't you get burned by the wood benches in a sauna?
How can I prep for the Curse of Strahd adventure effectively?
How to deal with an underperforming subordinate?
Why don't programs completely uninstall (remove all their files) when I remove them?
Can someone explain European graduate programs in STEM fields?
Partial derivative with respect to three variables
In the Lost in Space intro why was Dr. Smith actor listed as a special guest star?
Disk space full during insert, what happens?
Why do single electrical receptacles exist?
Is there any danger of my neighbor having my wife's signature?
How do I break down the math symbols in this equation
How to use math symbols to represent a basic formulaHow would I read this formula?How to represent the ceiling function using mathematical notation?How do I learn all the weird symbols and notations?What is the meaning of the $phi$ symbol in calculus?How do I interpret this notation systems of diff eq course I'm taking?Landau Notation - Practical explanationsMeaning of constant ${N_{i}}$Using logic symbols “fluently” in mathematics. How can I show that one set of conditions, represented by logic symbols, is independent of another?Notation about norm
$begingroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
$endgroup$
add a comment |
$begingroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
$endgroup$
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
1 hour ago
add a comment |
$begingroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
$endgroup$
$$frac{n}{phi(n)}=frac{n}{nprod_{p|n}left(1-frac{1}{p}right)}=frac{1}{prod_{p|n}left(1-frac{1}{p}right)}$$
How do I learn to understand these equations by myself as I can't seem to find the mathematical notation descriptions online?
notation
notation
edited 1 hour ago
Robert Howard
2,0381927
2,0381927
asked 1 hour ago
Po Chen LiuPo Chen Liu
1148
1148
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
1 hour ago
add a comment |
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
1 hour ago
1
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
1 hour ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123277%2fhow-do-i-break-down-the-math-symbols-in-this-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
add a comment |
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
add a comment |
$begingroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
$endgroup$
The big pi, $prod$ denotes a product. The subscript on this tells you which numbers this product is over. In this example, the subscript says $p|n$ which means "$p$ divides $n$" i.e. the product is over all the prime numbers $p$ that divide $n$ (the prime factors of $n$). $phi(n)$ denotes the Euler-Totient function. This counts the number of integers $m<n$ which are co-prime to $n$, i.e. have $gcd(m,n)=1$.
As an example, say we have $n=105=3times5times7$. Then $$prod_{p|n}left(1-frac1pright)=left(1-frac13right)timesleft(1-frac15right)timesleft(1-frac17right)=frac{16}{35}$$
answered 1 hour ago
John DoeJohn Doe
11.2k11238
11.2k11238
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123277%2fhow-do-i-break-down-the-math-symbols-in-this-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The $phi(n)$ refers to Euler's totient function. As explained here, the $prod_{pmid n}$ refers to taking a product over all distinct primes $p$ that divide $n$.
$endgroup$
– Minus One-Twelfth
1 hour ago
$begingroup$
For symbols you don't know, you can get help from en.wikipedia.org/wiki/List_of_mathematical_symbols
$endgroup$
– Mark S.
1 hour ago