Why Normality assumption in linear regressionProbability of x given past data and linear model...
How to solve a large system of linear algebra?
Can a person refuse a presidential pardon?
In Linux what happens if 1000 files in a directory are moved to another location while another 300 files were added to the source directory?
What is 6÷2×(1+2) =?
Intern applicant asking for compensation equivalent to that of permanent employee
How do you funnel food off a cutting board?
It took me a lot of time to make this, pls like. (YouTube Comments #1)
Can a hotel cancel a confirmed reservation?
Citing paywalled articles accessed via illegal web sharing
Roman Numerals equation 1
Why did other German political parties disband so fast when Hitler was appointed chancellor?
Explain the objections to these measures against human trafficking
what does しにみえてる mean?
Cookies - Should the toggles be on?
How can my powered armor quickly replace its ceramic plates?
Why did the villain in the first Men in Black movie care about Earth's Cockroaches?
How to avoid being sexist when trying to employ someone to function in a very sexist environment?
How can animals be objects of ethics without being subjects as well?
How to deal with an incendiary email that was recalled
Dilemma of explaining to interviewer that he is the reason for declining second interview
Injecting creativity into a cookbook
Why publish a research paper when a blog post or a lecture slide can have more citation count than a journal paper?
Why are the books in the Game of Thrones citadel library shelved spine inwards?
Why would the Pakistan airspace closure cancel flights not headed to Pakistan itself?
Why Normality assumption in linear regression
Probability of x given past data and linear model assumptionNormality assumption in linear regressionIs it necessary to plot histogram of dependent variable before running simple linear regression?Assumptions behind simple linear regression modelOLS vs. maximum likelihood under Normal distribution in linear regressionfrom where the error in target variable comes in linear regressionWhy linear regression has assumption on residual but generalized linear model has assumptions on response?Distribution of $(n-2)MSres/sigma^2$ in simple linear regressionHomoscedasticity assumption in simple linear regressionWhat if the Error is Not Normal in Linear Regression?
$begingroup$
My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?
regression mathematical-statistics normal-distribution error linear
$endgroup$
add a comment |
$begingroup$
My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?
regression mathematical-statistics normal-distribution error linear
$endgroup$
$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
2 hours ago
$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago
add a comment |
$begingroup$
My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?
regression mathematical-statistics normal-distribution error linear
$endgroup$
My question is very simple: why we choose normal as the distribution that error term follows in the assumption of linear regression? Why we don't choose others like uniform, t or whatever?
regression mathematical-statistics normal-distribution error linear
regression mathematical-statistics normal-distribution error linear
asked 2 hours ago
Master ShiMaster Shi
211
211
$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
2 hours ago
$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago
add a comment |
$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
2 hours ago
$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago
$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
2 hours ago
$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
2 hours ago
$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago
$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can choose another error distribution; they basically just change the loss function.
This is certainly done.
Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.
Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).
Many other choices are possible and quite a few have been used in practice.
[Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f395011%2fwhy-normality-assumption-in-linear-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can choose another error distribution; they basically just change the loss function.
This is certainly done.
Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.
Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).
Many other choices are possible and quite a few have been used in practice.
[Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]
$endgroup$
add a comment |
$begingroup$
You can choose another error distribution; they basically just change the loss function.
This is certainly done.
Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.
Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).
Many other choices are possible and quite a few have been used in practice.
[Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]
$endgroup$
add a comment |
$begingroup$
You can choose another error distribution; they basically just change the loss function.
This is certainly done.
Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.
Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).
Many other choices are possible and quite a few have been used in practice.
[Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]
$endgroup$
You can choose another error distribution; they basically just change the loss function.
This is certainly done.
Laplace (double exponential errors) correspond to least absolute deviations regression/$L_1$ regression (which numerous posts on site discuss). Regressions with t-errors are occasionally used (in some cases because they're more robust to gross errors), though they can have a disadvantage -- the likelihood (and therefore the negative of the loss) can have multiple modes.
Uniform errors correspond to an $L_infty$ loss (minimize the maximum deviation); such regression is sometimes called Chebyshev approximation (though beware, since there's another thing with essentially the same name). Again, this is sometimes done (indeed for simple regression and smallish data sets with bounded errors with constant spread the fit is often easy enough to find by hand, directly on a plot, though in practice you can use linear programming methods, or other algorithms; indeed, $L_infty$ and $L_1$ regression problems are duals of each other, which can lead to sometimes convenient shortcuts for some problems).
Many other choices are possible and quite a few have been used in practice.
[Note that if you have additive, independent, constant-spread errors with a density of the form $k,exp(-c.g(varepsilon))$, maximizing the likelihood will correspond to minimizing $sum_i g(e_i)$, where $e_i$ is the $i$th residual.]
edited 29 mins ago
answered 2 hours ago
Glen_b♦Glen_b
212k22409758
212k22409758
add a comment |
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f395011%2fwhy-normality-assumption-in-linear-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
We don't choose the normal assumption. It just happens to be the case that when the error is normal, the model coefficients exactly follow a normal distribution and an exact F-test can be used to test hypotheses about them.
$endgroup$
– AdamO
2 hours ago
$begingroup$
Because the math works out easily enough that people could use it before modern computers.
$endgroup$
– Nat
1 hour ago