Processo di Bernoulli Indice Variabili aleatorie | Applicazioni | Funzione di Bernoulli |...


Processi stocastici


teoria delle probabilitàprocesso aleatoriodiscretofamiglianumerabilevariabili aleatorieindipendentilegge di Bernoullimancanza di memoriaprobabilitàvariabile aleatorialegge binomialelegge geometricalegge di Pascalstatisticacampionepopolazioneproporzioneestrazione di Von Neumannteoria della complessità computazionalestringaspazio di Morsenumeri realibase binariaespressione decimalemisura uniformebinarienumero realeσ-algebraintervallo unitariooperatore di shiftmodulo 1parte frazionariacaos deterministicooperatore di trasferimentoautovaloriautofunzionipolinomi di Bernoullischema di Bernoulli




In teoria delle probabilità un processo di Bernoulli è un particolare processo aleatorio discreto, ovvero una famiglia numerabile (X1, X2, ...) di variabili aleatorie indipendenti aventi la medesima legge di Bernoulli B(p).


Un processo di Bernoulli può essere considerato come una sequenza di lanci di una moneta (eventualmente anche truccata). Ogni singolo lancio è detto prova di Bernoulli.


In particolare, essendo le variabili indipendenti, vale la mancanza di memoria: la probabilità di una prova di Bernoulli non è influenzata dal risultato delle precedenti (che quindi non possono fornire alcuna informazione sulla nuova prova).




Indice






  • 1 Variabili aleatorie


  • 2 Applicazioni


  • 3 Funzione di Bernoulli


  • 4 Generalizzazioni


  • 5 Bibliografia


  • 6 Voci correlate





Variabili aleatorie |


Ogni singola variabile aleatoria Xi può fornire due soli risultati: il successo (1) o il fallimento (0), con rispettive probabilità p e q=1-p:



P(Xi=1)=p{displaystyle P(X_{i}=1)=p}

P(Xi=0)=q=1−p{displaystyle P(X_{i}=0)=q=1-p}


Il numero di successi dopo n prove è dato dalla variabile aleatoria



Sn=X1+X2+…+Xn{displaystyle S_{n}=X_{1}+X_{2}+ldots +X_{n}},

che segue la legge binomiale B(n,p), con probabilità


P(Sn=k) = (nk)pkqn−k{displaystyle P(S_{n}=k) = {n choose k}p^{k}q^{n-k}}

pari al numero di sequenze di k successi e n-k fallimenti, moltiplicato per la probabilità che una qualunque di queste si verifichi.


Il numero di lanci necessari per ottenere un successo è dato da una variabile aleatoria N che segue la legge geometrica di rapporto q:



P(N=n) = P(Sn−1=0)⋅P(Xn=1) = qnpq{displaystyle P(N=n) = P(S_{n-1}=0)cdot P(X_{n}=1) = q^{n}{frac {p}{q}}}.

Più in generale, il numero di lanci necessari per ottenere k successi è dato da una variabile aleatoria Nk di legge



P(Nk=n) = P(Sn−1=k−1)⋅P(Xn=1) = (n−1k−1)pkqn−k{displaystyle P(N_{k}=n) = P(S_{n-1}=k-1)cdot P(X_{n}=1) = {n-1 choose k-1}p^{k}q^{n-k}};

in particolare, il numero di fallimenti è dato dalla variabile aleatoria Pk = Nk-n, di legge di Pascal (o binomiale negativa) P(p,k)



P(Pk=r) = P(Nk=r+k) = (r+k−1k−1)pkqr = (−1)k(−rk)pkqr{displaystyle P(P_{k}=r) = P(N_{k}=r+k) = {r+k-1 choose k-1}p^{k}q^{r} = (-1)^{k}{-r choose k}p^{k}q^{r}}.


Applicazioni |


In statistica un processo di Bernoulli (a tempo finito) viene utilizzato come modello per il campione di una popolazione della quale si vuole determinare la proporzione p che verifica una certa proprietà.


Ogni processo di Bernoulli (con p qualunque) può venire utilizzato per originare, tramite l'estrazione di Von Neumann, un nuovo processo di Bernoulli le cui prove seguono la legge B(1/2). Questo metodo è particolarmente utilizzato nella teoria della complessità computazionale e prevede di raggruppare le originali prove di Bernoulli a coppie successive; se i due elementi sono diversi si prende il valore del primo, mentre se sono uguali la coppia viene scartata, come ad esempio:



























































11 10 11 01 01 01 00 11 01 01 01 01 01 10 10 11 00 10 10 10 11 01 01 00 10 10
1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1

Questo metodo sfrutta l'uguaglianza delle probabilità



P(X2n=0,X2n+1=1) = P(X2n=1,X2n+1=0) = pq{displaystyle P(X_{2n}=0,X_{2n+1}=1) = P(X_{2n}=1,X_{2n+1}=0) = pq};

e siccome 2pq è al più 1/2, la lunghezza della stringa finale risulta mediamente essere lunga non più di un quarto della stringa iniziale.



Funzione di Bernoulli |


Un processo di Bernoulli può essere interpretato come una misura sullo spazio di Morse delle successioni di 0 e 1, o sull'intervallo [0,1] dei numeri reali in base binaria (la successione è la loro espressione decimale). In particolare, per p=1/2 si ottiene una misura uniforme.


Poiché ogni prova ha uno o due possibili risultati, una sequenza di tentativi può essere rappresentata dalle cifre binarie di un numero reale. Quando la probabilità p = 1/2, tutte le possibili distribuzioni sono ugualmente verosimili, e quindi la misura della σ-algebra del processo di Bernoulli è equivalente alla misura uniforme nell'intervallo unitario: in altre parole, i numeri reali sono uniformemente distribuiti sull'intervallo unitario.


L'operatore di shift che mangia la prima cifra, mandando ogni cifra nella precedente (T(x1,x2,x3,…)=(x2,x3,x4,…){displaystyle T(x_{1},x_{2},x_{3},ldots )=(x_{2},x_{3},x_{4},ldots )}) equivale quindi alla moltiplicazione per 2 modulo 1, o funzione di Bernoulli, (b(α)={2α}=2α[2α]{displaystyle b(alpha )={2alpha }=2alpha -[2alpha ]}, dove {2α} è la parte frazionaria di 2α).


La mappa di Bernoulli è un modello esattamente risolubile di caos deterministico. L'operatore di trasferimento, o operatore di Rouelle, di quest'applicazione è risolubile: i suoi autovalori sono potenze di 1/2 e le sue autofunzioni sono i polinomi di Bernoulli.



Generalizzazioni |


La generalizzazione del processo di Bernoulli nel caso multinomiale (più di due possibili risultati) è chiamata schema di Bernoulli.



Bibliografia |



  • Carl W. Helstrom, Probability and Stochastic Processes for Engineers, (1984) Macmillan Publishing Company, New York ISBN 0-02-353560-1.

  • Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, (2002) Athena Scientific, Massachusetts ISBN 1-886529-40-X

  • Pierre Gaspard, "r-adic one-dimensional maps and the Euler summation formula", Journal of Physics A, 25 (letter) L483-L485 (1992). (Describes the eigenfunctions of the transfer operator for the Bernoulli map)

  • Dean J. Driebe, Fully Chaotic Maps and Broken Time Symmetry, (1999) Kluwer Academic Publishers, Dordrecht Netherlands ISBN 0-7923-5564-4 (Chapters 2, 3 and 4 review the Ruelle resonances and subdynamics formalism for solving the Bernoulli map).



Voci correlate |



  • Processo aleatorio

  • Variabile casuale di Bernoulli

  • Variabile aleatoria binomiale

  • Variabile casuale geometrica

  • Variabili indipendenti

  • Processo di Lévy



MatematicaPortale Matematica: accedi alle voci di Wikipedia che trattano di matematica



Popular posts from this blog

Discografia di Klaus Schulze Indice Album in studio | Album dal vivo | Singoli | Antologie | Colonne...

Armoriale delle famiglie italiane (Car) Indice Armi | Bibliografia | Menu di navigazioneBlasone...

Lupi Siderali Indice Storia | Organizzazione | La Tredicesima Compagnia | Aspetto | Membri Importanti...