Smooth projection of a surf plot - tikz/gnuplotsmooth surface plot with pgfplots/gnuplotTikZ overwrites...

In a post-apocalypse world, with no power and few survivors, would Satnav still work?

Sri Keyuravati of krama tradition

Are there historical references that show that "diatonic" is a version of 'di-tonic' meaning 'two tonics'?

How can I give a Ranger advantage on a check due to Favored Enemy without spoiling the story for the player?

What can I do to encourage my players to use their consumables?

Coworker asking me to not bring cakes due to self control issue. What should I do?

Taking an academic pseudonym?

Bursted bubble like details on material

Modern Algebraic Geometry and Analytic Number Theory

Explicit Riemann Hilbert correspondence

How can I differentiate duration vs starting time

If I tried and failed to start my own business, how do I apply for a job without job experience?

Performance and power usage for Raspberry Pi in the Stratosphere

What is an efficient way to digitize a family photo collection?

Solving the linear first order differential equaition?

Identical projects by students at two different colleges: still plagiarism?

I have trouble understanding this fallacy: "If A, then B. Therefore if not-B, then not-A."

What is the second derivative with respect to price of a put option?

Protagonist constantly has to have long words explained to her. Will this get tedious?

Can I use a single resistor for multiple LED with different +ve sources?

Maybe pigeonhole problem?

Is it possible to map from a parameter to a trajectory?

Dealing with an internal ScriptKiddie

Minimum Viable Product for RTS game?



Smooth projection of a surf plot - tikz/gnuplot


smooth surface plot with pgfplots/gnuplotTikZ overwrites gnuplot .gnuplot filegnuplot, plot rotation arrowsNumerical conditional within tikz keys?How to prevent rounded and duplicated tick labels in pgfplots with fixed precision?Tikz and exponential style tick labelpgfplots: percentage in matrix plotImport plot from Gnuplotcombining surf and contour gnuplot for engine dataHow to do a planar/multiview/first-angle projection in Tikz?













1















I am drawing a 3D-Bessel function using pgfplots and gnuplot.
What I am trying to do is plot on top of the 3d box, a projection of the 3d function.



I thought of using a contour gnuplot plot, but although using a high number of contours, I cannot fill the entire surface of the projection, as seen in the following image



enter image description here



Any idea on how to avoid the gaps and have a smoothly filled projection?



The image was made using the following code



documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}

begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};

addplot3[contour gnuplot={output point meta=rawz,
number=1000,
labels=false,},
z filter/.code={defpgfmathresult{2.5}},
domain=-3:3,
y domain=-3:3]
gnuplot {besj0(x**2+y**2)};

end{axis}
end{tikzpicture}

end{document}









share|improve this question



























    1















    I am drawing a 3D-Bessel function using pgfplots and gnuplot.
    What I am trying to do is plot on top of the 3d box, a projection of the 3d function.



    I thought of using a contour gnuplot plot, but although using a high number of contours, I cannot fill the entire surface of the projection, as seen in the following image



    enter image description here



    Any idea on how to avoid the gaps and have a smoothly filled projection?



    The image was made using the following code



    documentclass{standalone}
    usepackage{pgfplots}
    usepackage{tikz}
    usepgfplotslibrary{patchplots}

    begin{document}
    begin{tikzpicture}
    begin{axis} [width=textwidth,
    height=textwidth,
    ultra thick,
    colorbar,
    colorbar style={yticklabel style={text width=2.5em,
    align=right,
    /pgf/number format/.cd,
    fixed,
    fixed zerofill,
    precision=1,
    },
    },
    xlabel={$rho_x=k_xr_x$},
    ylabel={$rho_y=k_yr_y$},
    zlabel={$j_l(rho)$},
    3d box,
    zmax=2.5,
    xmin=-3, xmax=3,
    ymin=-3.1, ymax=3.1,
    ytick={-3, -2, ..., 3},
    grid=major,
    grid style={line width=.1pt, draw=gray!30, dashed},
    x tick label style={/pgf/number format/.cd,
    fixed,
    fixed zerofill,
    precision=1
    },
    y tick label style={/pgf/number format/.cd,
    fixed,
    fixed zerofill,
    precision=1
    },
    z tick label style={/pgf/number format/.cd,
    fixed,
    fixed zerofill,
    precision=1
    },
    ]
    addplot3[surf,
    shader=interp,
    mesh/ordering=y varies,
    domain=-3:3,
    y domain=-3.1:3.1,
    ]
    gnuplot {besj0(x**2+y**2)};

    addplot3[contour gnuplot={output point meta=rawz,
    number=1000,
    labels=false,},
    z filter/.code={defpgfmathresult{2.5}},
    domain=-3:3,
    y domain=-3:3]
    gnuplot {besj0(x**2+y**2)};

    end{axis}
    end{tikzpicture}

    end{document}









    share|improve this question

























      1












      1








      1








      I am drawing a 3D-Bessel function using pgfplots and gnuplot.
      What I am trying to do is plot on top of the 3d box, a projection of the 3d function.



      I thought of using a contour gnuplot plot, but although using a high number of contours, I cannot fill the entire surface of the projection, as seen in the following image



      enter image description here



      Any idea on how to avoid the gaps and have a smoothly filled projection?



      The image was made using the following code



      documentclass{standalone}
      usepackage{pgfplots}
      usepackage{tikz}
      usepgfplotslibrary{patchplots}

      begin{document}
      begin{tikzpicture}
      begin{axis} [width=textwidth,
      height=textwidth,
      ultra thick,
      colorbar,
      colorbar style={yticklabel style={text width=2.5em,
      align=right,
      /pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1,
      },
      },
      xlabel={$rho_x=k_xr_x$},
      ylabel={$rho_y=k_yr_y$},
      zlabel={$j_l(rho)$},
      3d box,
      zmax=2.5,
      xmin=-3, xmax=3,
      ymin=-3.1, ymax=3.1,
      ytick={-3, -2, ..., 3},
      grid=major,
      grid style={line width=.1pt, draw=gray!30, dashed},
      x tick label style={/pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1
      },
      y tick label style={/pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1
      },
      z tick label style={/pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1
      },
      ]
      addplot3[surf,
      shader=interp,
      mesh/ordering=y varies,
      domain=-3:3,
      y domain=-3.1:3.1,
      ]
      gnuplot {besj0(x**2+y**2)};

      addplot3[contour gnuplot={output point meta=rawz,
      number=1000,
      labels=false,},
      z filter/.code={defpgfmathresult{2.5}},
      domain=-3:3,
      y domain=-3:3]
      gnuplot {besj0(x**2+y**2)};

      end{axis}
      end{tikzpicture}

      end{document}









      share|improve this question














      I am drawing a 3D-Bessel function using pgfplots and gnuplot.
      What I am trying to do is plot on top of the 3d box, a projection of the 3d function.



      I thought of using a contour gnuplot plot, but although using a high number of contours, I cannot fill the entire surface of the projection, as seen in the following image



      enter image description here



      Any idea on how to avoid the gaps and have a smoothly filled projection?



      The image was made using the following code



      documentclass{standalone}
      usepackage{pgfplots}
      usepackage{tikz}
      usepgfplotslibrary{patchplots}

      begin{document}
      begin{tikzpicture}
      begin{axis} [width=textwidth,
      height=textwidth,
      ultra thick,
      colorbar,
      colorbar style={yticklabel style={text width=2.5em,
      align=right,
      /pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1,
      },
      },
      xlabel={$rho_x=k_xr_x$},
      ylabel={$rho_y=k_yr_y$},
      zlabel={$j_l(rho)$},
      3d box,
      zmax=2.5,
      xmin=-3, xmax=3,
      ymin=-3.1, ymax=3.1,
      ytick={-3, -2, ..., 3},
      grid=major,
      grid style={line width=.1pt, draw=gray!30, dashed},
      x tick label style={/pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1
      },
      y tick label style={/pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1
      },
      z tick label style={/pgf/number format/.cd,
      fixed,
      fixed zerofill,
      precision=1
      },
      ]
      addplot3[surf,
      shader=interp,
      mesh/ordering=y varies,
      domain=-3:3,
      y domain=-3.1:3.1,
      ]
      gnuplot {besj0(x**2+y**2)};

      addplot3[contour gnuplot={output point meta=rawz,
      number=1000,
      labels=false,},
      z filter/.code={defpgfmathresult{2.5}},
      domain=-3:3,
      y domain=-3:3]
      gnuplot {besj0(x**2+y**2)};

      end{axis}
      end{tikzpicture}

      end{document}






      tikz-pgf 3d gnuplot tikz-3d






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 hours ago









      ThanosThanos

      6,0481354107




      6,0481354107






















          1 Answer
          1






          active

          oldest

          votes


















          3














          Instead of a contour plot I would plot a constant with the point meta of the original plot.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          ]
          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          ]
          gnuplot {besj0(x**2+y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(x**2+y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here



          If you use a polar plot, IMHO the result becomes even more appealing.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          data cs=polar,
          ]
          addplot3[surf, samples=51,
          shader=interp,
          z buffer=sort,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=3.1:0,
          ]
          gnuplot {besj0(y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=0:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here






          share|improve this answer


























          • Thank you very much for your help! I think I prefer the first way, because you see the folding easier however on the expense of having a not smooth projection. I will write another question about that!

            – Thanos
            31 mins ago











          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "85"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476458%2fsmooth-projection-of-a-surf-plot-tikz-gnuplot%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          Instead of a contour plot I would plot a constant with the point meta of the original plot.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          ]
          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          ]
          gnuplot {besj0(x**2+y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(x**2+y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here



          If you use a polar plot, IMHO the result becomes even more appealing.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          data cs=polar,
          ]
          addplot3[surf, samples=51,
          shader=interp,
          z buffer=sort,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=3.1:0,
          ]
          gnuplot {besj0(y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=0:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here






          share|improve this answer


























          • Thank you very much for your help! I think I prefer the first way, because you see the folding easier however on the expense of having a not smooth projection. I will write another question about that!

            – Thanos
            31 mins ago
















          3














          Instead of a contour plot I would plot a constant with the point meta of the original plot.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          ]
          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          ]
          gnuplot {besj0(x**2+y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(x**2+y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here



          If you use a polar plot, IMHO the result becomes even more appealing.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          data cs=polar,
          ]
          addplot3[surf, samples=51,
          shader=interp,
          z buffer=sort,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=3.1:0,
          ]
          gnuplot {besj0(y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=0:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here






          share|improve this answer


























          • Thank you very much for your help! I think I prefer the first way, because you see the folding easier however on the expense of having a not smooth projection. I will write another question about that!

            – Thanos
            31 mins ago














          3












          3








          3







          Instead of a contour plot I would plot a constant with the point meta of the original plot.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          ]
          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          ]
          gnuplot {besj0(x**2+y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(x**2+y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here



          If you use a polar plot, IMHO the result becomes even more appealing.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          data cs=polar,
          ]
          addplot3[surf, samples=51,
          shader=interp,
          z buffer=sort,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=3.1:0,
          ]
          gnuplot {besj0(y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=0:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here






          share|improve this answer















          Instead of a contour plot I would plot a constant with the point meta of the original plot.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          ]
          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          ]
          gnuplot {besj0(x**2+y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          mesh/ordering=y varies,
          domain=-3:3,
          y domain=-3.1:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(x**2+y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here



          If you use a polar plot, IMHO the result becomes even more appealing.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{pgfplots}
          pgfplotsset{compat=1.16}
          usepgfplotslibrary{patchplots}

          begin{document}
          begin{tikzpicture}
          begin{axis} [width=textwidth,
          height=textwidth,
          ultra thick,
          colorbar,
          colorbar style={yticklabel style={text width=2.5em,
          align=right,
          /pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1,
          },
          },
          xlabel={$rho_x=k_xr_x$},
          ylabel={$rho_y=k_yr_y$},
          zlabel={$j_l(rho)$},
          3d box,
          zmax=2.5,
          xmin=-3, xmax=3,
          ymin=-3.1, ymax=3.1,
          ytick={-3, -2, ..., 3},
          grid=major,
          grid style={line width=.1pt, draw=gray!30, dashed},
          x tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          y tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          z tick label style={/pgf/number format/.cd,
          fixed,
          fixed zerofill,
          precision=1
          },
          data cs=polar,
          ]
          addplot3[surf, samples=51,
          shader=interp,
          z buffer=sort,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=3.1:0,
          ]
          gnuplot {besj0(y**2)};

          addplot3[surf, samples=51,
          shader=interp,
          %mesh/ordering=y varies,
          domain=0:360,
          y domain=0:3.1,
          point meta=rawz,
          z filter/.code={defpgfmathresult{2.5}},
          ]
          gnuplot {besj0(y**2)};


          end{axis}
          end{tikzpicture}

          end{document}


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          marmotmarmot

          103k4122233




          103k4122233













          • Thank you very much for your help! I think I prefer the first way, because you see the folding easier however on the expense of having a not smooth projection. I will write another question about that!

            – Thanos
            31 mins ago



















          • Thank you very much for your help! I think I prefer the first way, because you see the folding easier however on the expense of having a not smooth projection. I will write another question about that!

            – Thanos
            31 mins ago

















          Thank you very much for your help! I think I prefer the first way, because you see the folding easier however on the expense of having a not smooth projection. I will write another question about that!

          – Thanos
          31 mins ago





          Thank you very much for your help! I think I prefer the first way, because you see the folding easier however on the expense of having a not smooth projection. I will write another question about that!

          – Thanos
          31 mins ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476458%2fsmooth-projection-of-a-surf-plot-tikz-gnuplot%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Discografia di Klaus Schulze Indice Album in studio | Album dal vivo | Singoli | Antologie | Colonne...

          Armoriale delle famiglie italiane (Car) Indice Armi | Bibliografia | Menu di navigazioneBlasone...

          Lupi Siderali Indice Storia | Organizzazione | La Tredicesima Compagnia | Aspetto | Membri Importanti...