Limit at infinity for complex functionsWhats an extended complex plane?continuity at infinityAsymmetry in the...

Identical projects by students at two different colleges: still plagiarism?

Is it really OK to use "because of"?

Renting a 2CV in France

How can I give a Ranger advantage on a check due to Favored Enemy without spoiling the story for the player?

Lubuntu 18.10 File Manager: How to view directory tree structure?

How bad is a Computer Science course that doesn't teach Design Patterns?

Co-worker sabotaging/undoing my work. (Software Development)

How long has this character been impersonating a Starfleet Officer?

Does the US government have any planning in place to ensure there's no shortages of food, fuel, steel and other commodities?

Why is it that Bernie Sanders is always called a "socialist"?

What can I do to encourage my players to use their consumables?

How to align the top of the text with the top of a figure produced by tikz in minipage

I have trouble understanding this fallacy: "If A, then B. Therefore if not-B, then not-A."

Other than edits for international editions, did Harry Potter and the Philosopher's Stone receive errata?

What is an efficient way to digitize a family photo collection?

Word for something that's always reliable, but never the best?

What is a good way to explain how a character can produce flames from their body?

Minimum Viable Product for RTS game?

Writing dialogues for characters whose first language is not English

Is it possible to detect 100% of SQLi with a simple regex?

Was there a pre-determined arrangement for the division of Germany in case it surrendered before any Soviet forces entered its territory?

How do I narratively explain how in-game circumstances do not mechanically allow a PC to instantly kill an NPC?

How much light is too much?

Modern Algebraic Geometry and Analytic Number Theory



Limit at infinity for complex functions


Whats an extended complex plane?continuity at infinityAsymmetry in the complex plane.No essential singularity at infinity implies polynomialmeromorphic functions on the extended complex planeOne side half twist mobius band are one to one transformation on extended complex planeIn complex variables, what is the behavior of e^z as x,y->positve or negative infinity?'Extended complex plane and infinityProving a generalization of Liouville's TheoremProblems to understand complex infinity limits.













3












$begingroup$


Suppose $f$ is entire and $lim_{ztoinfty}f(z)=infty$. Show that $f(mathbb{C})=mathbb{C}$.



First of all I don't really understand this question. I know $ztoinfty$ means $|z|toinfty$, but what does $f(z)toinfty$ means? Does it mean $|f(z)|to infty$? Also, I just learnt about the one point compactification $infty$ to the complex plane. So the reason we write $ztoinfty$ instead of $|z|to infty$ is because we are referring to $infty$ as a point in the extended complex plane $bar{mathbb{C}}$? So $f(z)toinfty$ is also referring to $infty$ in $bar{mathbb{C}}$?










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Suppose $f$ is entire and $lim_{ztoinfty}f(z)=infty$. Show that $f(mathbb{C})=mathbb{C}$.



    First of all I don't really understand this question. I know $ztoinfty$ means $|z|toinfty$, but what does $f(z)toinfty$ means? Does it mean $|f(z)|to infty$? Also, I just learnt about the one point compactification $infty$ to the complex plane. So the reason we write $ztoinfty$ instead of $|z|to infty$ is because we are referring to $infty$ as a point in the extended complex plane $bar{mathbb{C}}$? So $f(z)toinfty$ is also referring to $infty$ in $bar{mathbb{C}}$?










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      1



      $begingroup$


      Suppose $f$ is entire and $lim_{ztoinfty}f(z)=infty$. Show that $f(mathbb{C})=mathbb{C}$.



      First of all I don't really understand this question. I know $ztoinfty$ means $|z|toinfty$, but what does $f(z)toinfty$ means? Does it mean $|f(z)|to infty$? Also, I just learnt about the one point compactification $infty$ to the complex plane. So the reason we write $ztoinfty$ instead of $|z|to infty$ is because we are referring to $infty$ as a point in the extended complex plane $bar{mathbb{C}}$? So $f(z)toinfty$ is also referring to $infty$ in $bar{mathbb{C}}$?










      share|cite|improve this question









      $endgroup$




      Suppose $f$ is entire and $lim_{ztoinfty}f(z)=infty$. Show that $f(mathbb{C})=mathbb{C}$.



      First of all I don't really understand this question. I know $ztoinfty$ means $|z|toinfty$, but what does $f(z)toinfty$ means? Does it mean $|f(z)|to infty$? Also, I just learnt about the one point compactification $infty$ to the complex plane. So the reason we write $ztoinfty$ instead of $|z|to infty$ is because we are referring to $infty$ as a point in the extended complex plane $bar{mathbb{C}}$? So $f(z)toinfty$ is also referring to $infty$ in $bar{mathbb{C}}$?







      complex-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 41 mins ago









      Fluffy SkyeFluffy Skye

      1459




      1459






















          3 Answers
          3






          active

          oldest

          votes


















          5












          $begingroup$

          The niceties of the one-point compactification of $Bbb C$ aside, consider:



          $f(z) ne w, ; forall z in Bbb C; tag 1$



          $f(z) - w ne 0, ; forall z in Bbb C; tag 2$



          $(f(z) - w)^{-1}$ is then entire; since



          $f(z) to infty ; text{as} ; z to infty tag 3$



          $(f(z) - w)^{-1}$ is bounded; hence by Liouville's theorem, constant; but then we cannot have (3); thus (1) fails.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Nice answer! +1 vote.
            $endgroup$
            – Kavi Rama Murthy
            20 mins ago










          • $begingroup$
            @KaviRamaMurthy: quite a complement, considering the source! Cheers!
            $endgroup$
            – Robert Lewis
            20 mins ago



















          2












          $begingroup$

          The statement $lim_{ztoinfty}f(z)=infty$ means $|f(z)|to infty$ as $|z|toinfty$. It can be seen as convergence to $infty inBbb C_infty$ where $Bbb C_infty$ is a one-point compactification of $Bbb C$. In fact, this property implies that $f(z)=p(z)$ for some non-constant polynomial $p$. By fundamental theorem of algebra, it follows $f(Bbb C)=Bbb C$. To see this, let
          $
          g(z)=f(frac1{z})
          $
          for $zne 0$. Since $lim_{zto 0}|g(z)|=infty$ (which is true because as $zto 0$, $1/z to infty$ and $g(z)=f(1/z)toinfty$ by the assumption), it follows that $g$ has an $n$-th pole at $0$, i.e. for some $nge 1$, $a_{-n}ne 0$ and for all $zne 0$,
          $$
          g(z)=sum_{k=-n}^infty a_kz^k.
          $$
          (Here, $g$ having a pole is a classical result. Since $1/g$ tends to $0$ as $zto 0$, it has a removable singularity at $0$, which is also an $n$-th zero. It follows $1/g(z)=z^nh(z)$ for some $hne 0$ on a neighborhood of $0$. So $g(z) = z^{-n}frac1{h(z)}$ has an $n$-th pole.) Thus $f(z)=g(frac1{z})=sum_{k=0}^n a_{-k}z^k +sum_{i>0}a_{i}z^{-i}$, and since $f$ is entire, it follows $$f(z)=sum_{k=0}^n a_{-k}z^k=p(z).$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            The statement right after $lim_{z to 0} |g(z)| = infty$ is not that clear to me. It would require more arguments.
            $endgroup$
            – nicomezi
            14 mins ago










          • $begingroup$
            Thank you but I was rather talking about what is after that limit (the fact that $g$ has an $n$-th pole). I am not saying it is false. Since we have the limit on $f$ at $infty$ it cannot be an essential singularity. But it seems quite hard (compared to others answers) to write this rigorously.
            $endgroup$
            – nicomezi
            10 mins ago





















          0












          $begingroup$

          Let $g(z):=f(1/z)$ for $z ne 0$. Then $g$ has at $0$ an isolated singularity. Since $g(z) to infty$ as $z to 0$, $g$ has a pole at $0$.



          Let $f(z)=sum_{n=0}^{infty}a_nz^n$, then the Laurent expansion of $g$ at $0$ is given by



          $g(z)=sum_{n=0}^{infty}a_n frac{1}{z^n}$, which shows that there is $m$ such that $a_n=0$ for $n>m$.



          Hence $f$ is a non- constant poynomial. Now use the fundamental theorem of algebra.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125734%2flimit-at-infinity-for-complex-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            The niceties of the one-point compactification of $Bbb C$ aside, consider:



            $f(z) ne w, ; forall z in Bbb C; tag 1$



            $f(z) - w ne 0, ; forall z in Bbb C; tag 2$



            $(f(z) - w)^{-1}$ is then entire; since



            $f(z) to infty ; text{as} ; z to infty tag 3$



            $(f(z) - w)^{-1}$ is bounded; hence by Liouville's theorem, constant; but then we cannot have (3); thus (1) fails.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Nice answer! +1 vote.
              $endgroup$
              – Kavi Rama Murthy
              20 mins ago










            • $begingroup$
              @KaviRamaMurthy: quite a complement, considering the source! Cheers!
              $endgroup$
              – Robert Lewis
              20 mins ago
















            5












            $begingroup$

            The niceties of the one-point compactification of $Bbb C$ aside, consider:



            $f(z) ne w, ; forall z in Bbb C; tag 1$



            $f(z) - w ne 0, ; forall z in Bbb C; tag 2$



            $(f(z) - w)^{-1}$ is then entire; since



            $f(z) to infty ; text{as} ; z to infty tag 3$



            $(f(z) - w)^{-1}$ is bounded; hence by Liouville's theorem, constant; but then we cannot have (3); thus (1) fails.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Nice answer! +1 vote.
              $endgroup$
              – Kavi Rama Murthy
              20 mins ago










            • $begingroup$
              @KaviRamaMurthy: quite a complement, considering the source! Cheers!
              $endgroup$
              – Robert Lewis
              20 mins ago














            5












            5








            5





            $begingroup$

            The niceties of the one-point compactification of $Bbb C$ aside, consider:



            $f(z) ne w, ; forall z in Bbb C; tag 1$



            $f(z) - w ne 0, ; forall z in Bbb C; tag 2$



            $(f(z) - w)^{-1}$ is then entire; since



            $f(z) to infty ; text{as} ; z to infty tag 3$



            $(f(z) - w)^{-1}$ is bounded; hence by Liouville's theorem, constant; but then we cannot have (3); thus (1) fails.






            share|cite|improve this answer









            $endgroup$



            The niceties of the one-point compactification of $Bbb C$ aside, consider:



            $f(z) ne w, ; forall z in Bbb C; tag 1$



            $f(z) - w ne 0, ; forall z in Bbb C; tag 2$



            $(f(z) - w)^{-1}$ is then entire; since



            $f(z) to infty ; text{as} ; z to infty tag 3$



            $(f(z) - w)^{-1}$ is bounded; hence by Liouville's theorem, constant; but then we cannot have (3); thus (1) fails.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 22 mins ago









            Robert LewisRobert Lewis

            47.1k23067




            47.1k23067








            • 1




              $begingroup$
              Nice answer! +1 vote.
              $endgroup$
              – Kavi Rama Murthy
              20 mins ago










            • $begingroup$
              @KaviRamaMurthy: quite a complement, considering the source! Cheers!
              $endgroup$
              – Robert Lewis
              20 mins ago














            • 1




              $begingroup$
              Nice answer! +1 vote.
              $endgroup$
              – Kavi Rama Murthy
              20 mins ago










            • $begingroup$
              @KaviRamaMurthy: quite a complement, considering the source! Cheers!
              $endgroup$
              – Robert Lewis
              20 mins ago








            1




            1




            $begingroup$
            Nice answer! +1 vote.
            $endgroup$
            – Kavi Rama Murthy
            20 mins ago




            $begingroup$
            Nice answer! +1 vote.
            $endgroup$
            – Kavi Rama Murthy
            20 mins ago












            $begingroup$
            @KaviRamaMurthy: quite a complement, considering the source! Cheers!
            $endgroup$
            – Robert Lewis
            20 mins ago




            $begingroup$
            @KaviRamaMurthy: quite a complement, considering the source! Cheers!
            $endgroup$
            – Robert Lewis
            20 mins ago











            2












            $begingroup$

            The statement $lim_{ztoinfty}f(z)=infty$ means $|f(z)|to infty$ as $|z|toinfty$. It can be seen as convergence to $infty inBbb C_infty$ where $Bbb C_infty$ is a one-point compactification of $Bbb C$. In fact, this property implies that $f(z)=p(z)$ for some non-constant polynomial $p$. By fundamental theorem of algebra, it follows $f(Bbb C)=Bbb C$. To see this, let
            $
            g(z)=f(frac1{z})
            $
            for $zne 0$. Since $lim_{zto 0}|g(z)|=infty$ (which is true because as $zto 0$, $1/z to infty$ and $g(z)=f(1/z)toinfty$ by the assumption), it follows that $g$ has an $n$-th pole at $0$, i.e. for some $nge 1$, $a_{-n}ne 0$ and for all $zne 0$,
            $$
            g(z)=sum_{k=-n}^infty a_kz^k.
            $$
            (Here, $g$ having a pole is a classical result. Since $1/g$ tends to $0$ as $zto 0$, it has a removable singularity at $0$, which is also an $n$-th zero. It follows $1/g(z)=z^nh(z)$ for some $hne 0$ on a neighborhood of $0$. So $g(z) = z^{-n}frac1{h(z)}$ has an $n$-th pole.) Thus $f(z)=g(frac1{z})=sum_{k=0}^n a_{-k}z^k +sum_{i>0}a_{i}z^{-i}$, and since $f$ is entire, it follows $$f(z)=sum_{k=0}^n a_{-k}z^k=p(z).$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              The statement right after $lim_{z to 0} |g(z)| = infty$ is not that clear to me. It would require more arguments.
              $endgroup$
              – nicomezi
              14 mins ago










            • $begingroup$
              Thank you but I was rather talking about what is after that limit (the fact that $g$ has an $n$-th pole). I am not saying it is false. Since we have the limit on $f$ at $infty$ it cannot be an essential singularity. But it seems quite hard (compared to others answers) to write this rigorously.
              $endgroup$
              – nicomezi
              10 mins ago


















            2












            $begingroup$

            The statement $lim_{ztoinfty}f(z)=infty$ means $|f(z)|to infty$ as $|z|toinfty$. It can be seen as convergence to $infty inBbb C_infty$ where $Bbb C_infty$ is a one-point compactification of $Bbb C$. In fact, this property implies that $f(z)=p(z)$ for some non-constant polynomial $p$. By fundamental theorem of algebra, it follows $f(Bbb C)=Bbb C$. To see this, let
            $
            g(z)=f(frac1{z})
            $
            for $zne 0$. Since $lim_{zto 0}|g(z)|=infty$ (which is true because as $zto 0$, $1/z to infty$ and $g(z)=f(1/z)toinfty$ by the assumption), it follows that $g$ has an $n$-th pole at $0$, i.e. for some $nge 1$, $a_{-n}ne 0$ and for all $zne 0$,
            $$
            g(z)=sum_{k=-n}^infty a_kz^k.
            $$
            (Here, $g$ having a pole is a classical result. Since $1/g$ tends to $0$ as $zto 0$, it has a removable singularity at $0$, which is also an $n$-th zero. It follows $1/g(z)=z^nh(z)$ for some $hne 0$ on a neighborhood of $0$. So $g(z) = z^{-n}frac1{h(z)}$ has an $n$-th pole.) Thus $f(z)=g(frac1{z})=sum_{k=0}^n a_{-k}z^k +sum_{i>0}a_{i}z^{-i}$, and since $f$ is entire, it follows $$f(z)=sum_{k=0}^n a_{-k}z^k=p(z).$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              The statement right after $lim_{z to 0} |g(z)| = infty$ is not that clear to me. It would require more arguments.
              $endgroup$
              – nicomezi
              14 mins ago










            • $begingroup$
              Thank you but I was rather talking about what is after that limit (the fact that $g$ has an $n$-th pole). I am not saying it is false. Since we have the limit on $f$ at $infty$ it cannot be an essential singularity. But it seems quite hard (compared to others answers) to write this rigorously.
              $endgroup$
              – nicomezi
              10 mins ago
















            2












            2








            2





            $begingroup$

            The statement $lim_{ztoinfty}f(z)=infty$ means $|f(z)|to infty$ as $|z|toinfty$. It can be seen as convergence to $infty inBbb C_infty$ where $Bbb C_infty$ is a one-point compactification of $Bbb C$. In fact, this property implies that $f(z)=p(z)$ for some non-constant polynomial $p$. By fundamental theorem of algebra, it follows $f(Bbb C)=Bbb C$. To see this, let
            $
            g(z)=f(frac1{z})
            $
            for $zne 0$. Since $lim_{zto 0}|g(z)|=infty$ (which is true because as $zto 0$, $1/z to infty$ and $g(z)=f(1/z)toinfty$ by the assumption), it follows that $g$ has an $n$-th pole at $0$, i.e. for some $nge 1$, $a_{-n}ne 0$ and for all $zne 0$,
            $$
            g(z)=sum_{k=-n}^infty a_kz^k.
            $$
            (Here, $g$ having a pole is a classical result. Since $1/g$ tends to $0$ as $zto 0$, it has a removable singularity at $0$, which is also an $n$-th zero. It follows $1/g(z)=z^nh(z)$ for some $hne 0$ on a neighborhood of $0$. So $g(z) = z^{-n}frac1{h(z)}$ has an $n$-th pole.) Thus $f(z)=g(frac1{z})=sum_{k=0}^n a_{-k}z^k +sum_{i>0}a_{i}z^{-i}$, and since $f$ is entire, it follows $$f(z)=sum_{k=0}^n a_{-k}z^k=p(z).$$






            share|cite|improve this answer











            $endgroup$



            The statement $lim_{ztoinfty}f(z)=infty$ means $|f(z)|to infty$ as $|z|toinfty$. It can be seen as convergence to $infty inBbb C_infty$ where $Bbb C_infty$ is a one-point compactification of $Bbb C$. In fact, this property implies that $f(z)=p(z)$ for some non-constant polynomial $p$. By fundamental theorem of algebra, it follows $f(Bbb C)=Bbb C$. To see this, let
            $
            g(z)=f(frac1{z})
            $
            for $zne 0$. Since $lim_{zto 0}|g(z)|=infty$ (which is true because as $zto 0$, $1/z to infty$ and $g(z)=f(1/z)toinfty$ by the assumption), it follows that $g$ has an $n$-th pole at $0$, i.e. for some $nge 1$, $a_{-n}ne 0$ and for all $zne 0$,
            $$
            g(z)=sum_{k=-n}^infty a_kz^k.
            $$
            (Here, $g$ having a pole is a classical result. Since $1/g$ tends to $0$ as $zto 0$, it has a removable singularity at $0$, which is also an $n$-th zero. It follows $1/g(z)=z^nh(z)$ for some $hne 0$ on a neighborhood of $0$. So $g(z) = z^{-n}frac1{h(z)}$ has an $n$-th pole.) Thus $f(z)=g(frac1{z})=sum_{k=0}^n a_{-k}z^k +sum_{i>0}a_{i}z^{-i}$, and since $f$ is entire, it follows $$f(z)=sum_{k=0}^n a_{-k}z^k=p(z).$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 3 mins ago

























            answered 29 mins ago









            SongSong

            14.9k1635




            14.9k1635












            • $begingroup$
              The statement right after $lim_{z to 0} |g(z)| = infty$ is not that clear to me. It would require more arguments.
              $endgroup$
              – nicomezi
              14 mins ago










            • $begingroup$
              Thank you but I was rather talking about what is after that limit (the fact that $g$ has an $n$-th pole). I am not saying it is false. Since we have the limit on $f$ at $infty$ it cannot be an essential singularity. But it seems quite hard (compared to others answers) to write this rigorously.
              $endgroup$
              – nicomezi
              10 mins ago




















            • $begingroup$
              The statement right after $lim_{z to 0} |g(z)| = infty$ is not that clear to me. It would require more arguments.
              $endgroup$
              – nicomezi
              14 mins ago










            • $begingroup$
              Thank you but I was rather talking about what is after that limit (the fact that $g$ has an $n$-th pole). I am not saying it is false. Since we have the limit on $f$ at $infty$ it cannot be an essential singularity. But it seems quite hard (compared to others answers) to write this rigorously.
              $endgroup$
              – nicomezi
              10 mins ago


















            $begingroup$
            The statement right after $lim_{z to 0} |g(z)| = infty$ is not that clear to me. It would require more arguments.
            $endgroup$
            – nicomezi
            14 mins ago




            $begingroup$
            The statement right after $lim_{z to 0} |g(z)| = infty$ is not that clear to me. It would require more arguments.
            $endgroup$
            – nicomezi
            14 mins ago












            $begingroup$
            Thank you but I was rather talking about what is after that limit (the fact that $g$ has an $n$-th pole). I am not saying it is false. Since we have the limit on $f$ at $infty$ it cannot be an essential singularity. But it seems quite hard (compared to others answers) to write this rigorously.
            $endgroup$
            – nicomezi
            10 mins ago






            $begingroup$
            Thank you but I was rather talking about what is after that limit (the fact that $g$ has an $n$-th pole). I am not saying it is false. Since we have the limit on $f$ at $infty$ it cannot be an essential singularity. But it seems quite hard (compared to others answers) to write this rigorously.
            $endgroup$
            – nicomezi
            10 mins ago













            0












            $begingroup$

            Let $g(z):=f(1/z)$ for $z ne 0$. Then $g$ has at $0$ an isolated singularity. Since $g(z) to infty$ as $z to 0$, $g$ has a pole at $0$.



            Let $f(z)=sum_{n=0}^{infty}a_nz^n$, then the Laurent expansion of $g$ at $0$ is given by



            $g(z)=sum_{n=0}^{infty}a_n frac{1}{z^n}$, which shows that there is $m$ such that $a_n=0$ for $n>m$.



            Hence $f$ is a non- constant poynomial. Now use the fundamental theorem of algebra.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Let $g(z):=f(1/z)$ for $z ne 0$. Then $g$ has at $0$ an isolated singularity. Since $g(z) to infty$ as $z to 0$, $g$ has a pole at $0$.



              Let $f(z)=sum_{n=0}^{infty}a_nz^n$, then the Laurent expansion of $g$ at $0$ is given by



              $g(z)=sum_{n=0}^{infty}a_n frac{1}{z^n}$, which shows that there is $m$ such that $a_n=0$ for $n>m$.



              Hence $f$ is a non- constant poynomial. Now use the fundamental theorem of algebra.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Let $g(z):=f(1/z)$ for $z ne 0$. Then $g$ has at $0$ an isolated singularity. Since $g(z) to infty$ as $z to 0$, $g$ has a pole at $0$.



                Let $f(z)=sum_{n=0}^{infty}a_nz^n$, then the Laurent expansion of $g$ at $0$ is given by



                $g(z)=sum_{n=0}^{infty}a_n frac{1}{z^n}$, which shows that there is $m$ such that $a_n=0$ for $n>m$.



                Hence $f$ is a non- constant poynomial. Now use the fundamental theorem of algebra.






                share|cite|improve this answer









                $endgroup$



                Let $g(z):=f(1/z)$ for $z ne 0$. Then $g$ has at $0$ an isolated singularity. Since $g(z) to infty$ as $z to 0$, $g$ has a pole at $0$.



                Let $f(z)=sum_{n=0}^{infty}a_nz^n$, then the Laurent expansion of $g$ at $0$ is given by



                $g(z)=sum_{n=0}^{infty}a_n frac{1}{z^n}$, which shows that there is $m$ such that $a_n=0$ for $n>m$.



                Hence $f$ is a non- constant poynomial. Now use the fundamental theorem of algebra.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 12 mins ago









                FredFred

                46.9k1848




                46.9k1848






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125734%2flimit-at-infinity-for-complex-functions%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Szabolcs (Ungheria) Altri progetti | Menu di navigazione48°10′14.56″N 21°29′33.14″E /...

                    Discografia di Klaus Schulze Indice Album in studio | Album dal vivo | Singoli | Antologie | Colonne...

                    How to make inet_server_addr() return localhost in spite of ::1/128RETURN NEXT in Postgres FunctionConnect to...