Tikz/Pgf - Surf plot with smooth color transitionColor-bar - surf plotpgfplots: Color a 3D surf plot based on...
How do I avoid the "chosen hero" feeling?
Why does this relation fail symmetry and transitivity properties?
Identical projects by students at two different colleges: still plagiarism?
Why is Shelob considered evil?
What are some idioms that means something along the lines of "switching it up every day to not do the same thing over and over"?
I have trouble understanding this fallacy: "If A, then B. Therefore if not-B, then not-A."
How to not let the Identify spell spoil everything?
How to put text above column in minipage?
Minimum Viable Product for RTS game?
What is an efficient way to digitize a family photo collection?
Insecure private-key encryption
Players preemptively rolling, even though their rolls are useless or are checking the wrong skills
Why is it that Bernie Sanders is always called a "socialist"?
Equivalent of "illegal" for violating civil law
Why do objects rebound after hitting the ground?
How unreachable are Jupiter's moons from Mars with the technology developed for going to Mars?
Does rolling friction increase speed of a wheel?
Is it possible to detect 100% of SQLi with a simple regex?
How can I handle players killing my NPC outside of combat?
Solving the linear first order differential equation?
Is practicing on a digital piano harmful to an experienced piano player?
Calculating the strength of an ionic bond that contains poly-atomic ions
Fraction within another fraction
Would water spill from a bowl in a Bag of Holding?
Tikz/Pgf - Surf plot with smooth color transition
Color-bar - surf plotpgfplots: Color a 3D surf plot based on y-valueHow to prevent rounded and duplicated tick labels in pgfplots with fixed precision?Show mark labels near marks and not centered in ybar interaval graphTikz and exponential style tick labelTikZ: Circle with color transitionpgfplots: percentage in matrix plotTikz : Draw smooth convex3D Piecewise Plot with varying bounds in Tikz/PGFSmooth projection of a surf plot - tikz/gnuplot
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
add a comment |
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
1
With pleasure! No problem!
– Thanos
51 mins ago
add a comment |
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
I am drawing a surf
3d plot in Tikz/Pgf
using gnuplot
. This surface need to be projected on a plane, which can be achieved by adding another surf
plot.
The thing is that the transition between colors, in both surf
plots actually is not very smooth, despite using
shader=interp
One possibility is to increase the number of samples
however building becomes slow and I cannot exceed 75 samples.
An example code can be found right next
documentclass{standalone}
usepackage{pgfplots}
usepackage{tikz}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf,
samples=51,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(x**2+y**2)};
end{axis}
end{tikzpicture}
end{document}
and the result of this code is the following image
Any idea on how to make a smoother transition from color to color?
tikz-pgf pgfplots 3d gnuplot smooth
tikz-pgf pgfplots 3d gnuplot smooth
edited 50 mins ago
Thanos
asked 5 hours ago
ThanosThanos
6,0751354107
6,0751354107
1
With pleasure! No problem!
– Thanos
51 mins ago
add a comment |
1
With pleasure! No problem!
– Thanos
51 mins ago
1
1
With pleasure! No problem!
– Thanos
51 mins ago
With pleasure! No problem!
– Thanos
51 mins ago
add a comment |
1 Answer
1
active
oldest
votes
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
2 hours ago
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
2 hours ago
I mean the wiggles you mentioned in the side-effect.
– Thanos
2 hours ago
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
2 hours ago
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
2 hours ago
|
show 3 more comments
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476469%2ftikz-pgf-surf-plot-with-smooth-color-transition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
2 hours ago
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
2 hours ago
I mean the wiggles you mentioned in the side-effect.
– Thanos
2 hours ago
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
2 hours ago
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
2 hours ago
|
show 3 more comments
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
2 hours ago
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
2 hours ago
I mean the wiggles you mentioned in the side-effect.
– Thanos
2 hours ago
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
2 hours ago
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
2 hours ago
|
show 3 more comments
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
If your main concern is the color transitions, then you may want to use a polar plot because the function only depends on the radius and not on the angle. Then you could increase the samples in radial direction while leaving the samples in angular direction comparatively small.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
data cs=polar,
]
addplot3[surf, samples=37,samples y=101,
shader=interp,
z buffer=sort,
%mesh/ordering=y varies,
domain=0:360,
y domain=3.1:0,
]
gnuplot {besj0(y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
As a "side-effect" the wiggles will also disappear as they result from plotting a rotationally symmetric function in cartesian coordinates.
And here is a combination of a cartesian and a polar plot.
documentclass[tikz,border=3.14mm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.16}
usepgfplotslibrary{patchplots}
begin{document}
begin{tikzpicture}
begin{axis} [width=textwidth,
height=textwidth,
ultra thick,
colorbar,
colorbar style={yticklabel style={text width=2.5em,
align=right,
/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1,
},
},
xlabel={$rho_x=k_xr_x$},
ylabel={$rho_y=k_yr_y$},
zlabel={$j_l(rho)$},
3d box,
zmax=2.5,
xmin=-3, xmax=3,
ymin=-3.1, ymax=3.1,
ytick={-3, -2, ..., 3},
grid=major,
grid style={line width=.1pt, draw=gray!30, dashed},
x tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
y tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
z tick label style={/pgf/number format/.cd,
fixed,
fixed zerofill,
precision=1
},
]
addplot3[surf, samples=75,
shader=interp,
mesh/ordering=y varies,
domain=-3:3,
y domain=-3.1:3.1,
]
gnuplot {besj0(x**2+y**2)};
addplot3[surf, samples=36, samples y=101,
shader=interp,
%mesh/ordering=y varies,
domain=0:360,
y domain=0:3.1,
point meta=rawz,
data cs=polar,
z filter/.code={defpgfmathresult{2.5}},
]
gnuplot {besj0(y**2)};
end{axis}
end{tikzpicture}
end{document}
edited 2 hours ago
answered 3 hours ago
marmotmarmot
103k4122233
103k4122233
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
2 hours ago
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
2 hours ago
I mean the wiggles you mentioned in the side-effect.
– Thanos
2 hours ago
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
2 hours ago
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
2 hours ago
|
show 3 more comments
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
2 hours ago
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
2 hours ago
I mean the wiggles you mentioned in the side-effect.
– Thanos
2 hours ago
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
2 hours ago
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
2 hours ago
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
2 hours ago
Thank you very much for your answer! The point is that in the 3d surface the folding of the function is more prominent, therefore the wiggles are indeed needed! I could however use a polar plot on the projection. Is this possible?
– Thanos
2 hours ago
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
2 hours ago
@Thanos Yes, but I do not understand what you mean by "folding".
– marmot
2 hours ago
I mean the wiggles you mentioned in the side-effect.
– Thanos
2 hours ago
I mean the wiggles you mentioned in the side-effect.
– Thanos
2 hours ago
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
2 hours ago
@Thanos But aren't the wiggles "unphysical", meaning that the true Bessel function doesn't have them (since they imply an angular dependence, which J0 does not have)?
– marmot
2 hours ago
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
2 hours ago
@ marmot You are perfectly right. However, I believe that for illustration reasons, someone can better observe the oscillating behaviour.
– Thanos
2 hours ago
|
show 3 more comments
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476469%2ftikz-pgf-surf-plot-with-smooth-color-transition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
With pleasure! No problem!
– Thanos
51 mins ago