What happens to the first ionization potential when a hydrogen-like atom captures a particle?How can...

Can I use a single resistor for multiple LED with different +ve sources?

Tikz: Perpendicular FROM a line

Is practicing on a digital piano harmful to an experienced piano player?

What could cause an entire planet of humans to become aphasic?

Would water spill from a bowl in a Bag of Holding?

What does an unprocessed RAW file look like?

Why does a single AND gate need 60 transistors?

How do I avoid the "chosen hero" feeling?

Probability X1 ≥ X2

Boss asked me to sign a resignation paper without a date on it along with my new contract

How can I put a period right after the algorithm's number in the algorithm's title?

How can I handle players killing my NPC outside of combat?

Is it possible to detect 100% of SQLi with a simple regex?

Third wheel character

What happened to Hermione’s clothing and other possessions after she wiped her parents’ memories of her?

Using time travel without creating plot holes

How to know if I am a 'Real Developer'

Multiple null checks in Java 8

Disk space full during insert, what happens?

If a 12 by 16 sheet of paper is folded on its diagonal, what is the area of the region of the overlap?

Dealing with an internal ScriptKiddie

How do I fight with Heavy Armor as a Wizard with Tenser's Transformation?

Why don't you get burned by the wood benches in a sauna?

In the Lost in Space intro why was Dr. Smith actor listed as a special guest star?



What happens to the first ionization potential when a hydrogen-like atom captures a particle?


How can difference in neutron number cause a difference in ionisation enthalpies?Finding orbit radius using the Bohr model and Rydberg equationWhy is the common magnesium ion Mg(II) and not Mg(I) when the second ionization energy is higher than the first ionization energy?What is the element with the greatest first ionization energy?Charge-transfer absorption complex - solvent sensitivityIs the first ionization energy in oxygen slightly more than nitrogen?For hydrogen like atom, find velocity from potential energyIs the energy of the orbital an electron “resides” in, considered to be a factor of that electrons ionization energy?Constructing two body Hamiltonian for Helium atom in hydrogen slater orbitals single particle basisWhat is the real structure of atom showing every ORBITALWhat is the exact definition of the radial distribution function?













2












$begingroup$


This is a textbook problem from Resonance DLPD Physical Chemistry, Page #83:




The mass of a proton is $1836$ times the mass of an electron. If a subatomic particle of mass $207$ times the mass of an electron is captured by the nucleus, what happens to the first ionization potential of H?




My answer is that it may either increase or decrease depending on the charge of the captured particle.



However, the correct answer according to my book is that the ionization potential increases.



How do I arrive at this solution?










share|improve this question









$endgroup$








  • 1




    $begingroup$
    Energy of the $n^{th}$ state (simply by Bohr's model) can be found as, $E_n = - frac{me^4Z^2}{8 epsilon_0 ^2 n^2h^2}$. Now you can apply your logic and judge the final answer.
    $endgroup$
    – Soumik Das
    2 hours ago


















2












$begingroup$


This is a textbook problem from Resonance DLPD Physical Chemistry, Page #83:




The mass of a proton is $1836$ times the mass of an electron. If a subatomic particle of mass $207$ times the mass of an electron is captured by the nucleus, what happens to the first ionization potential of H?




My answer is that it may either increase or decrease depending on the charge of the captured particle.



However, the correct answer according to my book is that the ionization potential increases.



How do I arrive at this solution?










share|improve this question









$endgroup$








  • 1




    $begingroup$
    Energy of the $n^{th}$ state (simply by Bohr's model) can be found as, $E_n = - frac{me^4Z^2}{8 epsilon_0 ^2 n^2h^2}$. Now you can apply your logic and judge the final answer.
    $endgroup$
    – Soumik Das
    2 hours ago
















2












2








2





$begingroup$


This is a textbook problem from Resonance DLPD Physical Chemistry, Page #83:




The mass of a proton is $1836$ times the mass of an electron. If a subatomic particle of mass $207$ times the mass of an electron is captured by the nucleus, what happens to the first ionization potential of H?




My answer is that it may either increase or decrease depending on the charge of the captured particle.



However, the correct answer according to my book is that the ionization potential increases.



How do I arrive at this solution?










share|improve this question









$endgroup$




This is a textbook problem from Resonance DLPD Physical Chemistry, Page #83:




The mass of a proton is $1836$ times the mass of an electron. If a subatomic particle of mass $207$ times the mass of an electron is captured by the nucleus, what happens to the first ionization potential of H?




My answer is that it may either increase or decrease depending on the charge of the captured particle.



However, the correct answer according to my book is that the ionization potential increases.



How do I arrive at this solution?







physical-chemistry ionization-energy atomic-structure






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 2 hours ago









user69284user69284

434




434








  • 1




    $begingroup$
    Energy of the $n^{th}$ state (simply by Bohr's model) can be found as, $E_n = - frac{me^4Z^2}{8 epsilon_0 ^2 n^2h^2}$. Now you can apply your logic and judge the final answer.
    $endgroup$
    – Soumik Das
    2 hours ago
















  • 1




    $begingroup$
    Energy of the $n^{th}$ state (simply by Bohr's model) can be found as, $E_n = - frac{me^4Z^2}{8 epsilon_0 ^2 n^2h^2}$. Now you can apply your logic and judge the final answer.
    $endgroup$
    – Soumik Das
    2 hours ago










1




1




$begingroup$
Energy of the $n^{th}$ state (simply by Bohr's model) can be found as, $E_n = - frac{me^4Z^2}{8 epsilon_0 ^2 n^2h^2}$. Now you can apply your logic and judge the final answer.
$endgroup$
– Soumik Das
2 hours ago






$begingroup$
Energy of the $n^{th}$ state (simply by Bohr's model) can be found as, $E_n = - frac{me^4Z^2}{8 epsilon_0 ^2 n^2h^2}$. Now you can apply your logic and judge the final answer.
$endgroup$
– Soumik Das
2 hours ago












1 Answer
1






active

oldest

votes


















2












$begingroup$

When we solve the Schrodinger equation for the hydrogen atom we general make the simplifying assumption that the proton stays fixed and the electron moves in the potential of the fixed positive charge. So when we write, for example, the $1s$ orbital as:



$$ psi_{1s} = frac{2}{a_o^{3/2}} e^{-r/a_0} tag{1} $$



the variable $r$ is the distance from the proton, and in the equation for the Bohr radius:



$$ a_0 = frac{hbar^2}{me^2} tag{2} $$



The $m$ is the mass of the electron. If you're interested in some detail this is discussed on the Physics SE in Reduced mass in quantum physics (Hydrogen Atom) but taking into account the motion of the hydrogen atom turns out to be surprisingly simple. We simply define $r$ to be the distance to the centre of mass of the atom, and the mass $m$ then becomes the reduced mass of the electron-proton system:



$$ m = frac{m_e m_p}{m_e + m_p} tag{3} $$



If we take the limit of $m_p to infty$ then the reduced mass just becomes the electron mass $m_e$, but for finite $m_p$ the reduced mass is less than $m_e$.



Given all this you can now see what the question is getting at. If the proton captures a neutral particle of mass $207m_e$ the effect is to increase the mass of the proton. This increases the mass $m_p$ we have to put in to equation (3) so it increases the reduced mass in equation (2) and hence the wavefunction (1). The end result is that in the equation for the ionisation energy:



$$ I = frac{me^4}{8 epsilon_0 ^2 n^2h^2} tag{4} $$



the reduced mass $m$ is increased slightly so the ionisation energy increases slightly.



A good example of this is to compare the ionisation energies of hydrogen, deuterium and tritium, where the increased nuclear mass of deuterium and tritium increase the ionisation energy by the mechanism discussed above. In fact there is an existing quesion discussing exactly this: How can difference in neutron number cause a difference in ionisation enthalpies?






share|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "431"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f110000%2fwhat-happens-to-the-first-ionization-potential-when-a-hydrogen-like-atom-capture%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    When we solve the Schrodinger equation for the hydrogen atom we general make the simplifying assumption that the proton stays fixed and the electron moves in the potential of the fixed positive charge. So when we write, for example, the $1s$ orbital as:



    $$ psi_{1s} = frac{2}{a_o^{3/2}} e^{-r/a_0} tag{1} $$



    the variable $r$ is the distance from the proton, and in the equation for the Bohr radius:



    $$ a_0 = frac{hbar^2}{me^2} tag{2} $$



    The $m$ is the mass of the electron. If you're interested in some detail this is discussed on the Physics SE in Reduced mass in quantum physics (Hydrogen Atom) but taking into account the motion of the hydrogen atom turns out to be surprisingly simple. We simply define $r$ to be the distance to the centre of mass of the atom, and the mass $m$ then becomes the reduced mass of the electron-proton system:



    $$ m = frac{m_e m_p}{m_e + m_p} tag{3} $$



    If we take the limit of $m_p to infty$ then the reduced mass just becomes the electron mass $m_e$, but for finite $m_p$ the reduced mass is less than $m_e$.



    Given all this you can now see what the question is getting at. If the proton captures a neutral particle of mass $207m_e$ the effect is to increase the mass of the proton. This increases the mass $m_p$ we have to put in to equation (3) so it increases the reduced mass in equation (2) and hence the wavefunction (1). The end result is that in the equation for the ionisation energy:



    $$ I = frac{me^4}{8 epsilon_0 ^2 n^2h^2} tag{4} $$



    the reduced mass $m$ is increased slightly so the ionisation energy increases slightly.



    A good example of this is to compare the ionisation energies of hydrogen, deuterium and tritium, where the increased nuclear mass of deuterium and tritium increase the ionisation energy by the mechanism discussed above. In fact there is an existing quesion discussing exactly this: How can difference in neutron number cause a difference in ionisation enthalpies?






    share|improve this answer









    $endgroup$


















      2












      $begingroup$

      When we solve the Schrodinger equation for the hydrogen atom we general make the simplifying assumption that the proton stays fixed and the electron moves in the potential of the fixed positive charge. So when we write, for example, the $1s$ orbital as:



      $$ psi_{1s} = frac{2}{a_o^{3/2}} e^{-r/a_0} tag{1} $$



      the variable $r$ is the distance from the proton, and in the equation for the Bohr radius:



      $$ a_0 = frac{hbar^2}{me^2} tag{2} $$



      The $m$ is the mass of the electron. If you're interested in some detail this is discussed on the Physics SE in Reduced mass in quantum physics (Hydrogen Atom) but taking into account the motion of the hydrogen atom turns out to be surprisingly simple. We simply define $r$ to be the distance to the centre of mass of the atom, and the mass $m$ then becomes the reduced mass of the electron-proton system:



      $$ m = frac{m_e m_p}{m_e + m_p} tag{3} $$



      If we take the limit of $m_p to infty$ then the reduced mass just becomes the electron mass $m_e$, but for finite $m_p$ the reduced mass is less than $m_e$.



      Given all this you can now see what the question is getting at. If the proton captures a neutral particle of mass $207m_e$ the effect is to increase the mass of the proton. This increases the mass $m_p$ we have to put in to equation (3) so it increases the reduced mass in equation (2) and hence the wavefunction (1). The end result is that in the equation for the ionisation energy:



      $$ I = frac{me^4}{8 epsilon_0 ^2 n^2h^2} tag{4} $$



      the reduced mass $m$ is increased slightly so the ionisation energy increases slightly.



      A good example of this is to compare the ionisation energies of hydrogen, deuterium and tritium, where the increased nuclear mass of deuterium and tritium increase the ionisation energy by the mechanism discussed above. In fact there is an existing quesion discussing exactly this: How can difference in neutron number cause a difference in ionisation enthalpies?






      share|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        When we solve the Schrodinger equation for the hydrogen atom we general make the simplifying assumption that the proton stays fixed and the electron moves in the potential of the fixed positive charge. So when we write, for example, the $1s$ orbital as:



        $$ psi_{1s} = frac{2}{a_o^{3/2}} e^{-r/a_0} tag{1} $$



        the variable $r$ is the distance from the proton, and in the equation for the Bohr radius:



        $$ a_0 = frac{hbar^2}{me^2} tag{2} $$



        The $m$ is the mass of the electron. If you're interested in some detail this is discussed on the Physics SE in Reduced mass in quantum physics (Hydrogen Atom) but taking into account the motion of the hydrogen atom turns out to be surprisingly simple. We simply define $r$ to be the distance to the centre of mass of the atom, and the mass $m$ then becomes the reduced mass of the electron-proton system:



        $$ m = frac{m_e m_p}{m_e + m_p} tag{3} $$



        If we take the limit of $m_p to infty$ then the reduced mass just becomes the electron mass $m_e$, but for finite $m_p$ the reduced mass is less than $m_e$.



        Given all this you can now see what the question is getting at. If the proton captures a neutral particle of mass $207m_e$ the effect is to increase the mass of the proton. This increases the mass $m_p$ we have to put in to equation (3) so it increases the reduced mass in equation (2) and hence the wavefunction (1). The end result is that in the equation for the ionisation energy:



        $$ I = frac{me^4}{8 epsilon_0 ^2 n^2h^2} tag{4} $$



        the reduced mass $m$ is increased slightly so the ionisation energy increases slightly.



        A good example of this is to compare the ionisation energies of hydrogen, deuterium and tritium, where the increased nuclear mass of deuterium and tritium increase the ionisation energy by the mechanism discussed above. In fact there is an existing quesion discussing exactly this: How can difference in neutron number cause a difference in ionisation enthalpies?






        share|improve this answer









        $endgroup$



        When we solve the Schrodinger equation for the hydrogen atom we general make the simplifying assumption that the proton stays fixed and the electron moves in the potential of the fixed positive charge. So when we write, for example, the $1s$ orbital as:



        $$ psi_{1s} = frac{2}{a_o^{3/2}} e^{-r/a_0} tag{1} $$



        the variable $r$ is the distance from the proton, and in the equation for the Bohr radius:



        $$ a_0 = frac{hbar^2}{me^2} tag{2} $$



        The $m$ is the mass of the electron. If you're interested in some detail this is discussed on the Physics SE in Reduced mass in quantum physics (Hydrogen Atom) but taking into account the motion of the hydrogen atom turns out to be surprisingly simple. We simply define $r$ to be the distance to the centre of mass of the atom, and the mass $m$ then becomes the reduced mass of the electron-proton system:



        $$ m = frac{m_e m_p}{m_e + m_p} tag{3} $$



        If we take the limit of $m_p to infty$ then the reduced mass just becomes the electron mass $m_e$, but for finite $m_p$ the reduced mass is less than $m_e$.



        Given all this you can now see what the question is getting at. If the proton captures a neutral particle of mass $207m_e$ the effect is to increase the mass of the proton. This increases the mass $m_p$ we have to put in to equation (3) so it increases the reduced mass in equation (2) and hence the wavefunction (1). The end result is that in the equation for the ionisation energy:



        $$ I = frac{me^4}{8 epsilon_0 ^2 n^2h^2} tag{4} $$



        the reduced mass $m$ is increased slightly so the ionisation energy increases slightly.



        A good example of this is to compare the ionisation energies of hydrogen, deuterium and tritium, where the increased nuclear mass of deuterium and tritium increase the ionisation energy by the mechanism discussed above. In fact there is an existing quesion discussing exactly this: How can difference in neutron number cause a difference in ionisation enthalpies?







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 1 hour ago









        John RennieJohn Rennie

        1,422918




        1,422918






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Chemistry Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f110000%2fwhat-happens-to-the-first-ionization-potential-when-a-hydrogen-like-atom-capture%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Discografia di Klaus Schulze Indice Album in studio | Album dal vivo | Singoli | Antologie | Colonne...

            Armoriale delle famiglie italiane (Car) Indice Armi | Bibliografia | Menu di navigazioneBlasone...

            Lupi Siderali Indice Storia | Organizzazione | La Tredicesima Compagnia | Aspetto | Membri Importanti...