Limiting value of a sequence when n tends to infinityHow do I evaluate $prod_{r=1}^{infty }left...
Limiting value of a sequence when n tends to infinity
Minimum Viable Product for RTS game?
How to deal with an underperforming subordinate?
Are all power cords made equal?
Including proofs of known theorems in master's thesis
Why is it that Bernie Sanders is always called a "socialist"?
How long can the stop in a stop-and-go be?
Why is Shelob considered evil?
I am a giant among ants
Protagonist constantly has to have long words explained to her. Will this get tedious?
Third wheel character
If a 12 by 16 sheet of paper is folded on its diagonal, what is the area of the region of the overlap?
What do "compile" , "fit" and "predict" do in Keras sequential models?
Expression for "unconsciously using words (or accents) used by a person you often talk with or listen to"?
What's the reason that we have different quantities of days each month?
How do I fight with Heavy Armor as a Wizard with Tenser's Transformation?
Why did Ylvis use "go" instead of "say" in phrases like "Dog goes 'woof'"?
Isn't a semicolon (';') needed after a function declaration in C++?
Why does a single AND gate need 60 transistors?
Coworker asking me to not bring cakes due to self control issue. What should I do?
How to write Muḥammad ibn Mūsā al-Khwārizmī?
Is practicing on a digital piano harmful to an experienced piano player?
Why do single electrical receptacles exist?
Taking out the plank from one's own eye
Limiting value of a sequence when n tends to infinity
How do I evaluate $prod_{r=1}^{infty }left (1-frac{1}{sqrt {r+1}}right)$?Find the value of $lim_{n rightarrow infty} Big( 1-frac{1}{sqrt 2} Big) cdots Big(1-frac{1}{sqrt {n+1}} Big)$Let $a_{n}=(1-frac{1}{sqrt{2}})ldots(1-frac{1}{sqrt{n+1}}), n geq 1 $. Then $lim_limits{n rightarrow infty} a_{n} $If $a_n=left(1-frac{1}{sqrt{2}}right)ldotsleft(1-frac{1}{sqrt{n+1}}right)$ then $lim_{ntoinfty}a_n=?$How can I find $lim_{nto infty} a_n$Finding the limit of the sequence $(1 - 1/sqrt 2) dotsm ( 1 - 1/sqrt {n+1})$$mathbf{a_n = (1-frac{1}{sqrt2})…(1-frac{1}{sqrt{n+1}})}$, $n ge 1$ $Rightarrow$ $lim_{nto infty} a_n$ =?Intersection of 3 planes in 3D spaceWhy prime number theorem tends to one?Constant sequence limit at infinityMaximum value of a sequencehow to simplify $frac{d}{dx}left(ln left(sqrt{frac{1}{2-x}}right)right)$Find the Limit of the given sequence x_n = $(1 - 1/3 )^2$ $(1 - 1/6)^2$ $(1 - 1/10)^2$…$(1 - 2/n(n+1))^2$, n>=2find $lim_{ntoinfty}(1+frac{1}{3})(1+frac{1}{3^2})(1+frac{1}{3^4})cdots(1+frac{1}{3^{2^n}})$limits to infinity when x goes to infinityLimiting value of this expressionFind the limiting value of $S=a^{sqrt{1}}+a^{sqrt{2}}+a^{sqrt{3}}+a^{sqrt{4}}+…$ for $0 leq a < 1$Find the limit of this as n tends to infinity
$begingroup$
Q) Let, $a_{n} ;=; left ( 1-frac{1}{sqrt{2}} right ) ... left ( 1- frac{1}{sqrt{n+1}} right )$ , $n geq 1$. Then $lim_{nrightarrow infty } a_{n}$
(A) equals $1$
(B) does not exist
(C) equals $frac{1}{sqrt{pi }}$
(D) equals $0$
My Approach :- I am not getting a particular direction or any procedure to simplify $a_{n}$ and find its value when n tends to infinity.
So, I tried like this simple way to substitute values and trying to find the limiting value :-
$left ( 1-frac{1}{sqrt{1+1}} right ) * left ( 1-frac{1}{sqrt{2+1}} right )*left ( 1-frac{1}{sqrt{3+1}} right )*left ( 1-frac{1}{sqrt{4+1}} right )*left ( 1-frac{1}{sqrt{5+1}} right )*left ( 1-frac{1}{sqrt{6+1}} right )*left ( 1-frac{1}{sqrt{7+1}} right )*left ( 1-frac{1}{sqrt{8+1}} right )*.........*left ( 1-frac{1}{sqrt{n+1}} right )$
=$(0.293)*(0.423)*(0.5)*(0.553)*(0.622)*(0.647)*(0.667)* ....$
=0.009*...
So, here value is tending to zero. I think option $(D)$ is correct.
I have tried like this
$left ( frac{sqrt{2}-1}{sqrt{2}} right )*left ( frac{sqrt{3}-1}{sqrt{3}} right )*left ( frac{sqrt{4}-1}{sqrt{4}} right )*.......left ( frac{sqrt{(n+1)}-1}{sqrt{n+1}} right )$
= $left ( frac{(sqrt{2}-1)*(sqrt{3}-1)*(sqrt{4}-1)*.......*(sqrt{n+1}-1)}{{sqrt{(n+1)!}}} right )$
Now, again I stuck how to simplify further and find the value for which $a_{n}$ converges when $n$ tends to infinity . Please help if there is any procedure to solve this question.
calculus sequences-and-series limits products
$endgroup$
|
show 1 more comment
$begingroup$
Q) Let, $a_{n} ;=; left ( 1-frac{1}{sqrt{2}} right ) ... left ( 1- frac{1}{sqrt{n+1}} right )$ , $n geq 1$. Then $lim_{nrightarrow infty } a_{n}$
(A) equals $1$
(B) does not exist
(C) equals $frac{1}{sqrt{pi }}$
(D) equals $0$
My Approach :- I am not getting a particular direction or any procedure to simplify $a_{n}$ and find its value when n tends to infinity.
So, I tried like this simple way to substitute values and trying to find the limiting value :-
$left ( 1-frac{1}{sqrt{1+1}} right ) * left ( 1-frac{1}{sqrt{2+1}} right )*left ( 1-frac{1}{sqrt{3+1}} right )*left ( 1-frac{1}{sqrt{4+1}} right )*left ( 1-frac{1}{sqrt{5+1}} right )*left ( 1-frac{1}{sqrt{6+1}} right )*left ( 1-frac{1}{sqrt{7+1}} right )*left ( 1-frac{1}{sqrt{8+1}} right )*.........*left ( 1-frac{1}{sqrt{n+1}} right )$
=$(0.293)*(0.423)*(0.5)*(0.553)*(0.622)*(0.647)*(0.667)* ....$
=0.009*...
So, here value is tending to zero. I think option $(D)$ is correct.
I have tried like this
$left ( frac{sqrt{2}-1}{sqrt{2}} right )*left ( frac{sqrt{3}-1}{sqrt{3}} right )*left ( frac{sqrt{4}-1}{sqrt{4}} right )*.......left ( frac{sqrt{(n+1)}-1}{sqrt{n+1}} right )$
= $left ( frac{(sqrt{2}-1)*(sqrt{3}-1)*(sqrt{4}-1)*.......*(sqrt{n+1}-1)}{{sqrt{(n+1)!}}} right )$
Now, again I stuck how to simplify further and find the value for which $a_{n}$ converges when $n$ tends to infinity . Please help if there is any procedure to solve this question.
calculus sequences-and-series limits products
$endgroup$
$begingroup$
Using the inequality $1+x leq e^x$ which is true for all $x in mathbb{R}$, we have $$ a_n leq expleft{ -sum_{k=2}^{n} frac{1}{sqrt{k}} right} leq C expleft{ -int_{0}^{n} frac{mathrm{d}x}{sqrt{x}} right} = C e^{-2sqrt{n}} $$ for some constant $C > 0$. From this, we can conclude $a_n to 0$. A more natural approach is to take log and utilize Taylor approximation, which in turn yields $a_n = e^{-2sqrt{n} + mathcal{O}(1)}$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
30 mins ago
1
$begingroup$
What would you do if it were $$left(1-frac12right)left(1-frac13right)cdotsleft(1-frac1{n+1}right)?$$
$endgroup$
– Lord Shark the Unknown
29 mins ago
$begingroup$
Been asked here couple of times: $(1 - 1/sqrt 2) dotsm ( 1 - 1/sqrt {n+1})$, $mathbf{a_n = (1-frac{1}{sqrt2})...(1-frac{1}{sqrt{n+1}})}$, $n ge 1$ $Rightarrow$ $lim_{nto infty} a_n$ =?, Find the value of $lim_{n rightarrow infty} Big( 1-frac{1}{sqrt 2} Big) cdots Big(1-frac{1}{sqrt {n+1}} Big)$,
$endgroup$
– Sil
10 mins ago
$begingroup$
If $a_n=left(1-frac{1}{sqrt{2}}right)ldotsleft(1-frac{1}{sqrt{n+1}}right)$ then $lim_{ntoinfty}a_n=?$, How can I find $lim_{nto infty} a_n$ and Let $a_{n}=(1-frac{1}{sqrt{2}})ldots(1-frac{1}{sqrt{n+1}}), n geq 1 $. Then $lim_limits{n rightarrow infty} a_{n} $...
$endgroup$
– Sil
10 mins ago
$begingroup$
Possible duplicate of How can I find $lim_{nto infty} a_n$
$endgroup$
– Sil
8 mins ago
|
show 1 more comment
$begingroup$
Q) Let, $a_{n} ;=; left ( 1-frac{1}{sqrt{2}} right ) ... left ( 1- frac{1}{sqrt{n+1}} right )$ , $n geq 1$. Then $lim_{nrightarrow infty } a_{n}$
(A) equals $1$
(B) does not exist
(C) equals $frac{1}{sqrt{pi }}$
(D) equals $0$
My Approach :- I am not getting a particular direction or any procedure to simplify $a_{n}$ and find its value when n tends to infinity.
So, I tried like this simple way to substitute values and trying to find the limiting value :-
$left ( 1-frac{1}{sqrt{1+1}} right ) * left ( 1-frac{1}{sqrt{2+1}} right )*left ( 1-frac{1}{sqrt{3+1}} right )*left ( 1-frac{1}{sqrt{4+1}} right )*left ( 1-frac{1}{sqrt{5+1}} right )*left ( 1-frac{1}{sqrt{6+1}} right )*left ( 1-frac{1}{sqrt{7+1}} right )*left ( 1-frac{1}{sqrt{8+1}} right )*.........*left ( 1-frac{1}{sqrt{n+1}} right )$
=$(0.293)*(0.423)*(0.5)*(0.553)*(0.622)*(0.647)*(0.667)* ....$
=0.009*...
So, here value is tending to zero. I think option $(D)$ is correct.
I have tried like this
$left ( frac{sqrt{2}-1}{sqrt{2}} right )*left ( frac{sqrt{3}-1}{sqrt{3}} right )*left ( frac{sqrt{4}-1}{sqrt{4}} right )*.......left ( frac{sqrt{(n+1)}-1}{sqrt{n+1}} right )$
= $left ( frac{(sqrt{2}-1)*(sqrt{3}-1)*(sqrt{4}-1)*.......*(sqrt{n+1}-1)}{{sqrt{(n+1)!}}} right )$
Now, again I stuck how to simplify further and find the value for which $a_{n}$ converges when $n$ tends to infinity . Please help if there is any procedure to solve this question.
calculus sequences-and-series limits products
$endgroup$
Q) Let, $a_{n} ;=; left ( 1-frac{1}{sqrt{2}} right ) ... left ( 1- frac{1}{sqrt{n+1}} right )$ , $n geq 1$. Then $lim_{nrightarrow infty } a_{n}$
(A) equals $1$
(B) does not exist
(C) equals $frac{1}{sqrt{pi }}$
(D) equals $0$
My Approach :- I am not getting a particular direction or any procedure to simplify $a_{n}$ and find its value when n tends to infinity.
So, I tried like this simple way to substitute values and trying to find the limiting value :-
$left ( 1-frac{1}{sqrt{1+1}} right ) * left ( 1-frac{1}{sqrt{2+1}} right )*left ( 1-frac{1}{sqrt{3+1}} right )*left ( 1-frac{1}{sqrt{4+1}} right )*left ( 1-frac{1}{sqrt{5+1}} right )*left ( 1-frac{1}{sqrt{6+1}} right )*left ( 1-frac{1}{sqrt{7+1}} right )*left ( 1-frac{1}{sqrt{8+1}} right )*.........*left ( 1-frac{1}{sqrt{n+1}} right )$
=$(0.293)*(0.423)*(0.5)*(0.553)*(0.622)*(0.647)*(0.667)* ....$
=0.009*...
So, here value is tending to zero. I think option $(D)$ is correct.
I have tried like this
$left ( frac{sqrt{2}-1}{sqrt{2}} right )*left ( frac{sqrt{3}-1}{sqrt{3}} right )*left ( frac{sqrt{4}-1}{sqrt{4}} right )*.......left ( frac{sqrt{(n+1)}-1}{sqrt{n+1}} right )$
= $left ( frac{(sqrt{2}-1)*(sqrt{3}-1)*(sqrt{4}-1)*.......*(sqrt{n+1}-1)}{{sqrt{(n+1)!}}} right )$
Now, again I stuck how to simplify further and find the value for which $a_{n}$ converges when $n$ tends to infinity . Please help if there is any procedure to solve this question.
calculus sequences-and-series limits products
calculus sequences-and-series limits products
edited 12 mins ago
Michael Rozenberg
105k1892197
105k1892197
asked 35 mins ago
ankitankit
175
175
$begingroup$
Using the inequality $1+x leq e^x$ which is true for all $x in mathbb{R}$, we have $$ a_n leq expleft{ -sum_{k=2}^{n} frac{1}{sqrt{k}} right} leq C expleft{ -int_{0}^{n} frac{mathrm{d}x}{sqrt{x}} right} = C e^{-2sqrt{n}} $$ for some constant $C > 0$. From this, we can conclude $a_n to 0$. A more natural approach is to take log and utilize Taylor approximation, which in turn yields $a_n = e^{-2sqrt{n} + mathcal{O}(1)}$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
30 mins ago
1
$begingroup$
What would you do if it were $$left(1-frac12right)left(1-frac13right)cdotsleft(1-frac1{n+1}right)?$$
$endgroup$
– Lord Shark the Unknown
29 mins ago
$begingroup$
Been asked here couple of times: $(1 - 1/sqrt 2) dotsm ( 1 - 1/sqrt {n+1})$, $mathbf{a_n = (1-frac{1}{sqrt2})...(1-frac{1}{sqrt{n+1}})}$, $n ge 1$ $Rightarrow$ $lim_{nto infty} a_n$ =?, Find the value of $lim_{n rightarrow infty} Big( 1-frac{1}{sqrt 2} Big) cdots Big(1-frac{1}{sqrt {n+1}} Big)$,
$endgroup$
– Sil
10 mins ago
$begingroup$
If $a_n=left(1-frac{1}{sqrt{2}}right)ldotsleft(1-frac{1}{sqrt{n+1}}right)$ then $lim_{ntoinfty}a_n=?$, How can I find $lim_{nto infty} a_n$ and Let $a_{n}=(1-frac{1}{sqrt{2}})ldots(1-frac{1}{sqrt{n+1}}), n geq 1 $. Then $lim_limits{n rightarrow infty} a_{n} $...
$endgroup$
– Sil
10 mins ago
$begingroup$
Possible duplicate of How can I find $lim_{nto infty} a_n$
$endgroup$
– Sil
8 mins ago
|
show 1 more comment
$begingroup$
Using the inequality $1+x leq e^x$ which is true for all $x in mathbb{R}$, we have $$ a_n leq expleft{ -sum_{k=2}^{n} frac{1}{sqrt{k}} right} leq C expleft{ -int_{0}^{n} frac{mathrm{d}x}{sqrt{x}} right} = C e^{-2sqrt{n}} $$ for some constant $C > 0$. From this, we can conclude $a_n to 0$. A more natural approach is to take log and utilize Taylor approximation, which in turn yields $a_n = e^{-2sqrt{n} + mathcal{O}(1)}$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
30 mins ago
1
$begingroup$
What would you do if it were $$left(1-frac12right)left(1-frac13right)cdotsleft(1-frac1{n+1}right)?$$
$endgroup$
– Lord Shark the Unknown
29 mins ago
$begingroup$
Been asked here couple of times: $(1 - 1/sqrt 2) dotsm ( 1 - 1/sqrt {n+1})$, $mathbf{a_n = (1-frac{1}{sqrt2})...(1-frac{1}{sqrt{n+1}})}$, $n ge 1$ $Rightarrow$ $lim_{nto infty} a_n$ =?, Find the value of $lim_{n rightarrow infty} Big( 1-frac{1}{sqrt 2} Big) cdots Big(1-frac{1}{sqrt {n+1}} Big)$,
$endgroup$
– Sil
10 mins ago
$begingroup$
If $a_n=left(1-frac{1}{sqrt{2}}right)ldotsleft(1-frac{1}{sqrt{n+1}}right)$ then $lim_{ntoinfty}a_n=?$, How can I find $lim_{nto infty} a_n$ and Let $a_{n}=(1-frac{1}{sqrt{2}})ldots(1-frac{1}{sqrt{n+1}}), n geq 1 $. Then $lim_limits{n rightarrow infty} a_{n} $...
$endgroup$
– Sil
10 mins ago
$begingroup$
Possible duplicate of How can I find $lim_{nto infty} a_n$
$endgroup$
– Sil
8 mins ago
$begingroup$
Using the inequality $1+x leq e^x$ which is true for all $x in mathbb{R}$, we have $$ a_n leq expleft{ -sum_{k=2}^{n} frac{1}{sqrt{k}} right} leq C expleft{ -int_{0}^{n} frac{mathrm{d}x}{sqrt{x}} right} = C e^{-2sqrt{n}} $$ for some constant $C > 0$. From this, we can conclude $a_n to 0$. A more natural approach is to take log and utilize Taylor approximation, which in turn yields $a_n = e^{-2sqrt{n} + mathcal{O}(1)}$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
30 mins ago
$begingroup$
Using the inequality $1+x leq e^x$ which is true for all $x in mathbb{R}$, we have $$ a_n leq expleft{ -sum_{k=2}^{n} frac{1}{sqrt{k}} right} leq C expleft{ -int_{0}^{n} frac{mathrm{d}x}{sqrt{x}} right} = C e^{-2sqrt{n}} $$ for some constant $C > 0$. From this, we can conclude $a_n to 0$. A more natural approach is to take log and utilize Taylor approximation, which in turn yields $a_n = e^{-2sqrt{n} + mathcal{O}(1)}$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
30 mins ago
1
1
$begingroup$
What would you do if it were $$left(1-frac12right)left(1-frac13right)cdotsleft(1-frac1{n+1}right)?$$
$endgroup$
– Lord Shark the Unknown
29 mins ago
$begingroup$
What would you do if it were $$left(1-frac12right)left(1-frac13right)cdotsleft(1-frac1{n+1}right)?$$
$endgroup$
– Lord Shark the Unknown
29 mins ago
$begingroup$
Been asked here couple of times: $(1 - 1/sqrt 2) dotsm ( 1 - 1/sqrt {n+1})$, $mathbf{a_n = (1-frac{1}{sqrt2})...(1-frac{1}{sqrt{n+1}})}$, $n ge 1$ $Rightarrow$ $lim_{nto infty} a_n$ =?, Find the value of $lim_{n rightarrow infty} Big( 1-frac{1}{sqrt 2} Big) cdots Big(1-frac{1}{sqrt {n+1}} Big)$,
$endgroup$
– Sil
10 mins ago
$begingroup$
Been asked here couple of times: $(1 - 1/sqrt 2) dotsm ( 1 - 1/sqrt {n+1})$, $mathbf{a_n = (1-frac{1}{sqrt2})...(1-frac{1}{sqrt{n+1}})}$, $n ge 1$ $Rightarrow$ $lim_{nto infty} a_n$ =?, Find the value of $lim_{n rightarrow infty} Big( 1-frac{1}{sqrt 2} Big) cdots Big(1-frac{1}{sqrt {n+1}} Big)$,
$endgroup$
– Sil
10 mins ago
$begingroup$
If $a_n=left(1-frac{1}{sqrt{2}}right)ldotsleft(1-frac{1}{sqrt{n+1}}right)$ then $lim_{ntoinfty}a_n=?$, How can I find $lim_{nto infty} a_n$ and Let $a_{n}=(1-frac{1}{sqrt{2}})ldots(1-frac{1}{sqrt{n+1}}), n geq 1 $. Then $lim_limits{n rightarrow infty} a_{n} $...
$endgroup$
– Sil
10 mins ago
$begingroup$
If $a_n=left(1-frac{1}{sqrt{2}}right)ldotsleft(1-frac{1}{sqrt{n+1}}right)$ then $lim_{ntoinfty}a_n=?$, How can I find $lim_{nto infty} a_n$ and Let $a_{n}=(1-frac{1}{sqrt{2}})ldots(1-frac{1}{sqrt{n+1}}), n geq 1 $. Then $lim_limits{n rightarrow infty} a_{n} $...
$endgroup$
– Sil
10 mins ago
$begingroup$
Possible duplicate of How can I find $lim_{nto infty} a_n$
$endgroup$
– Sil
8 mins ago
$begingroup$
Possible duplicate of How can I find $lim_{nto infty} a_n$
$endgroup$
– Sil
8 mins ago
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
The hint:
$$0<a_n=prod_{k=1}^nleft(1-frac{1}{sqrt{k+1}}right)<prod_{k=1}^nleft(1-frac{1}{k+1}right)=frac{1}{n+1}rightarrow0$$
$endgroup$
$begingroup$
Michael.In 2 lines! :)
$endgroup$
– Peter Szilas
14 mins ago
add a comment |
$begingroup$
As we multiply positive factors below $1$, the sequence is positive and strictly decreasing, hence convergent (ruling out B). As already $a_1<1$, we also rule out A.
If we multiply $a_n$ by $b_n:=left(1+frac1{sqrt 2}right)cdots left(1+frac1{sqrt {n+1}}right)$, note that the product of corresponding factors is $left(1-frac1{sqrt {k}}right)left(1+frac1{sqrt {k}}right)=1-frac1k<1$, hence $a_nb_n<1$. On the other hand, by expanding the product and dropping lots of positive terms
$$b_nge 1+frac1{sqrt 2}+frac1{sqrt 3}+ldots+frac1{sqrt {n+1}} $$
so that $b_n$ gets arbitrarily large. We conclude that $a_n$ gets arbitrarily small positive. In other words $a_nto 0$.
$endgroup$
$begingroup$
Hagen.Very nice.
$endgroup$
– Peter Szilas
15 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3124615%2flimiting-value-of-a-sequence-when-n-tends-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The hint:
$$0<a_n=prod_{k=1}^nleft(1-frac{1}{sqrt{k+1}}right)<prod_{k=1}^nleft(1-frac{1}{k+1}right)=frac{1}{n+1}rightarrow0$$
$endgroup$
$begingroup$
Michael.In 2 lines! :)
$endgroup$
– Peter Szilas
14 mins ago
add a comment |
$begingroup$
The hint:
$$0<a_n=prod_{k=1}^nleft(1-frac{1}{sqrt{k+1}}right)<prod_{k=1}^nleft(1-frac{1}{k+1}right)=frac{1}{n+1}rightarrow0$$
$endgroup$
$begingroup$
Michael.In 2 lines! :)
$endgroup$
– Peter Szilas
14 mins ago
add a comment |
$begingroup$
The hint:
$$0<a_n=prod_{k=1}^nleft(1-frac{1}{sqrt{k+1}}right)<prod_{k=1}^nleft(1-frac{1}{k+1}right)=frac{1}{n+1}rightarrow0$$
$endgroup$
The hint:
$$0<a_n=prod_{k=1}^nleft(1-frac{1}{sqrt{k+1}}right)<prod_{k=1}^nleft(1-frac{1}{k+1}right)=frac{1}{n+1}rightarrow0$$
answered 25 mins ago
Michael RozenbergMichael Rozenberg
105k1892197
105k1892197
$begingroup$
Michael.In 2 lines! :)
$endgroup$
– Peter Szilas
14 mins ago
add a comment |
$begingroup$
Michael.In 2 lines! :)
$endgroup$
– Peter Szilas
14 mins ago
$begingroup$
Michael.In 2 lines! :)
$endgroup$
– Peter Szilas
14 mins ago
$begingroup$
Michael.In 2 lines! :)
$endgroup$
– Peter Szilas
14 mins ago
add a comment |
$begingroup$
As we multiply positive factors below $1$, the sequence is positive and strictly decreasing, hence convergent (ruling out B). As already $a_1<1$, we also rule out A.
If we multiply $a_n$ by $b_n:=left(1+frac1{sqrt 2}right)cdots left(1+frac1{sqrt {n+1}}right)$, note that the product of corresponding factors is $left(1-frac1{sqrt {k}}right)left(1+frac1{sqrt {k}}right)=1-frac1k<1$, hence $a_nb_n<1$. On the other hand, by expanding the product and dropping lots of positive terms
$$b_nge 1+frac1{sqrt 2}+frac1{sqrt 3}+ldots+frac1{sqrt {n+1}} $$
so that $b_n$ gets arbitrarily large. We conclude that $a_n$ gets arbitrarily small positive. In other words $a_nto 0$.
$endgroup$
$begingroup$
Hagen.Very nice.
$endgroup$
– Peter Szilas
15 mins ago
add a comment |
$begingroup$
As we multiply positive factors below $1$, the sequence is positive and strictly decreasing, hence convergent (ruling out B). As already $a_1<1$, we also rule out A.
If we multiply $a_n$ by $b_n:=left(1+frac1{sqrt 2}right)cdots left(1+frac1{sqrt {n+1}}right)$, note that the product of corresponding factors is $left(1-frac1{sqrt {k}}right)left(1+frac1{sqrt {k}}right)=1-frac1k<1$, hence $a_nb_n<1$. On the other hand, by expanding the product and dropping lots of positive terms
$$b_nge 1+frac1{sqrt 2}+frac1{sqrt 3}+ldots+frac1{sqrt {n+1}} $$
so that $b_n$ gets arbitrarily large. We conclude that $a_n$ gets arbitrarily small positive. In other words $a_nto 0$.
$endgroup$
$begingroup$
Hagen.Very nice.
$endgroup$
– Peter Szilas
15 mins ago
add a comment |
$begingroup$
As we multiply positive factors below $1$, the sequence is positive and strictly decreasing, hence convergent (ruling out B). As already $a_1<1$, we also rule out A.
If we multiply $a_n$ by $b_n:=left(1+frac1{sqrt 2}right)cdots left(1+frac1{sqrt {n+1}}right)$, note that the product of corresponding factors is $left(1-frac1{sqrt {k}}right)left(1+frac1{sqrt {k}}right)=1-frac1k<1$, hence $a_nb_n<1$. On the other hand, by expanding the product and dropping lots of positive terms
$$b_nge 1+frac1{sqrt 2}+frac1{sqrt 3}+ldots+frac1{sqrt {n+1}} $$
so that $b_n$ gets arbitrarily large. We conclude that $a_n$ gets arbitrarily small positive. In other words $a_nto 0$.
$endgroup$
As we multiply positive factors below $1$, the sequence is positive and strictly decreasing, hence convergent (ruling out B). As already $a_1<1$, we also rule out A.
If we multiply $a_n$ by $b_n:=left(1+frac1{sqrt 2}right)cdots left(1+frac1{sqrt {n+1}}right)$, note that the product of corresponding factors is $left(1-frac1{sqrt {k}}right)left(1+frac1{sqrt {k}}right)=1-frac1k<1$, hence $a_nb_n<1$. On the other hand, by expanding the product and dropping lots of positive terms
$$b_nge 1+frac1{sqrt 2}+frac1{sqrt 3}+ldots+frac1{sqrt {n+1}} $$
so that $b_n$ gets arbitrarily large. We conclude that $a_n$ gets arbitrarily small positive. In other words $a_nto 0$.
answered 25 mins ago
Hagen von EitzenHagen von Eitzen
280k23272505
280k23272505
$begingroup$
Hagen.Very nice.
$endgroup$
– Peter Szilas
15 mins ago
add a comment |
$begingroup$
Hagen.Very nice.
$endgroup$
– Peter Szilas
15 mins ago
$begingroup$
Hagen.Very nice.
$endgroup$
– Peter Szilas
15 mins ago
$begingroup$
Hagen.Very nice.
$endgroup$
– Peter Szilas
15 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3124615%2flimiting-value-of-a-sequence-when-n-tends-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Using the inequality $1+x leq e^x$ which is true for all $x in mathbb{R}$, we have $$ a_n leq expleft{ -sum_{k=2}^{n} frac{1}{sqrt{k}} right} leq C expleft{ -int_{0}^{n} frac{mathrm{d}x}{sqrt{x}} right} = C e^{-2sqrt{n}} $$ for some constant $C > 0$. From this, we can conclude $a_n to 0$. A more natural approach is to take log and utilize Taylor approximation, which in turn yields $a_n = e^{-2sqrt{n} + mathcal{O}(1)}$ as $ntoinfty$.
$endgroup$
– Sangchul Lee
30 mins ago
1
$begingroup$
What would you do if it were $$left(1-frac12right)left(1-frac13right)cdotsleft(1-frac1{n+1}right)?$$
$endgroup$
– Lord Shark the Unknown
29 mins ago
$begingroup$
Been asked here couple of times: $(1 - 1/sqrt 2) dotsm ( 1 - 1/sqrt {n+1})$, $mathbf{a_n = (1-frac{1}{sqrt2})...(1-frac{1}{sqrt{n+1}})}$, $n ge 1$ $Rightarrow$ $lim_{nto infty} a_n$ =?, Find the value of $lim_{n rightarrow infty} Big( 1-frac{1}{sqrt 2} Big) cdots Big(1-frac{1}{sqrt {n+1}} Big)$,
$endgroup$
– Sil
10 mins ago
$begingroup$
If $a_n=left(1-frac{1}{sqrt{2}}right)ldotsleft(1-frac{1}{sqrt{n+1}}right)$ then $lim_{ntoinfty}a_n=?$, How can I find $lim_{nto infty} a_n$ and Let $a_{n}=(1-frac{1}{sqrt{2}})ldots(1-frac{1}{sqrt{n+1}}), n geq 1 $. Then $lim_limits{n rightarrow infty} a_{n} $...
$endgroup$
– Sil
10 mins ago
$begingroup$
Possible duplicate of How can I find $lim_{nto infty} a_n$
$endgroup$
– Sil
8 mins ago