Is there a non trivial covering of the Klein bottle by the Klein bottleHow to calculate all the subgroups of...
Feature to polygon in multiple folders
Co-worker sabotaging/undoing my work. (Software Development)
Why do single electrical receptacles exist?
How to fly a direct entry holding pattern when approaching from an awkward angle?
Specific list manipulation
Buying a "Used" Router
How can I give a Ranger advantage on a check due to Favored Enemy without spoiling the story for the player?
Why do neural networks need so many examples to perform?
Modern Algebraic Geometry and Analytic Number Theory
Maybe pigeonhole problem?
Why didn't Tom Riddle take the presence of Fawkes and the Sorting Hat as more of a threat?
I have trouble understanding this fallacy: "If A, then B. Therefore if not-B, then not-A."
Does it take energy to move something in a circle?
How to deal with an underperforming subordinate?
my cron command doesn’t work
Can I travel from country A to country B to country C without going back to country A?
How long has this character been impersonating a Starfleet Officer?
Is Screenshot Time-tracking Common?
Why are mages sometimes played bot instead of traditional ADCs?
Crack the bank account's password!
How much light is too much?
If angels and devils are the same species, why would their mortal offspring appear physically different?
Is the percentage symbol a constant?
Is it really OK to use "because of"?
Is there a non trivial covering of the Klein bottle by the Klein bottle
How to calculate all the subgroups of the fundamental group of the Klein bottle?Torus as double cover of the Klein bottleThe double cover of Klein bottleNon-normal covering of a Klein bottle by torus.Topology on Klein bottle?Klein-bottle and Möbius-strip together with a homeomorphismHomeomorphism of Klein BottleKlein bottle covered by the torusEmbed Torus into Klein BottleKlein bottle and torus in mod $p$ homology
$begingroup$
Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.
Is there a non trivial covering of $K$ by $K$?
The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.
Thank you for any hints and help.
general-topology algebraic-topology klein-bottle
$endgroup$
add a comment |
$begingroup$
Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.
Is there a non trivial covering of $K$ by $K$?
The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.
Thank you for any hints and help.
general-topology algebraic-topology klein-bottle
$endgroup$
add a comment |
$begingroup$
Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.
Is there a non trivial covering of $K$ by $K$?
The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.
Thank you for any hints and help.
general-topology algebraic-topology klein-bottle
$endgroup$
Let K be the Klein bottle obtained by the quotient of $[0, 1] × [0; 1]$
by the equivalence relation $(x, 0) ∼ (1 − x, 1)$ and $(0, y) ∼ (1, y)$.
Is there a non trivial covering of $K$ by $K$?
The universal cover of $K$ is $Bbb R^2$ and I know the torus can also be a cover of $K$, but I don't know where to start.
Thank you for any hints and help.
general-topology algebraic-topology klein-bottle
general-topology algebraic-topology klein-bottle
asked 2 hours ago
PerelManPerelMan
629312
629312
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.
$fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.
$endgroup$
$begingroup$
this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
$endgroup$
– PerelMan
39 mins ago
add a comment |
$begingroup$
One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.
This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125520%2fis-there-a-non-trivial-covering-of-the-klein-bottle-by-the-klein-bottle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.
$fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.
$endgroup$
$begingroup$
this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
$endgroup$
– PerelMan
39 mins ago
add a comment |
$begingroup$
The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.
$fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.
$endgroup$
$begingroup$
this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
$endgroup$
– PerelMan
39 mins ago
add a comment |
$begingroup$
The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.
$fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.
$endgroup$
The Klein bottle is the quotient of $mathbb{R}^2$ by the group $G$ generated by $u(x,y)=(1-x,y)$ and $v(x,y)=(x,y+1)$Consider $f(x,y)=(x,2y)$ $fcirc u(x,y)=f(1-x,y)=(1-x,2y)=ucirc f(x,y)$.
$fcirc v(x,y)=f(x,y+1)=(x,2y+2)=v^2circ f$. This implies that $f$ induces a continuous map of $mathbb{R}^2/G$ this map is a covering of order $2$.
answered 1 hour ago
Tsemo AristideTsemo Aristide
58.7k11445
58.7k11445
$begingroup$
this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
$endgroup$
– PerelMan
39 mins ago
add a comment |
$begingroup$
this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
$endgroup$
– PerelMan
39 mins ago
$begingroup$
this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
$endgroup$
– PerelMan
39 mins ago
$begingroup$
this is a cover of the Klein bottle by the Torus right? or it is a cover by the Klein bottle?
$endgroup$
– PerelMan
39 mins ago
add a comment |
$begingroup$
One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.
This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).
$endgroup$
add a comment |
$begingroup$
One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.
This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).
$endgroup$
add a comment |
$begingroup$
One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.
This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).
$endgroup$
One way you can envision the two-fold cover of $K$ by the torus by placing two copies of the given square next to each other such that the $(x,0)$ side of one is touching the $(x,1)$ side of the other. To check that this translates to a well-defined map $Tto K$ is fairly straightforward.
This can be extended to a 3-fold cover of $K$ by itself if you place three such squares next to each other (or more generally for any odd $n$).
answered 1 hour ago
Rolf HoyerRolf Hoyer
11.2k31629
11.2k31629
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3125520%2fis-there-a-non-trivial-covering-of-the-klein-bottle-by-the-klein-bottle%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown